Answer
Verified
455.4k+ views
Hint:The concept of Lorentz force must be applied to solve this problem. The Lorentz force is the combined force that a charged particle experiences when it enters a region of electric and magnetic field aligned perpendicular to each other.
Lorentz Force, $L = {F_E} + {F_B}$
where ${F_E}\& {F_B}$ are the forces due to electric field E and magnetic field B respectively.
Complete step-by-step answer:
Consider the following region of space with mutually perpendicular electric field, E and magnetic field, B. The direction of electric field is from left to right and the direction of magnetic field is into the plane of paper.
Consider a particle of charge +q that is entering the region as shown.
When it enters, it experiences combined force due to an electric and magnetic field, known as Lorentz force.
$L = {F_E} + {F_B}$
Electric field, ${F_E} = qE$ This force is along the direction of the electric field.
Magnetic field, ${F_B} = q\left( {\overrightarrow v \times \overrightarrow B } \right)$ where v = velocity.
Since, there is a cross-product of velocity and magnetic field, the force will be at the perpendicular direction as that of the magnetic field.
Thus, when the combined force acts on the particle, the particle experiences a force pushing it to move upwards. However, it cannot move upwards because the resultant force acting on the particle makes it hover around in circles with the magnetic force, ${F_B}$ providing the necessary centripetal force to the rotation.
The radius of rotation,
$r = \dfrac{{mv}}{{Bq}}$
Also, $v = \dfrac{{rBq}}{m}$
And $mv = rBq$
where m and v are the mass and the velocity of the particles, respectively.
We should, also, take into consideration that there is an electric field acting on the particle.
When the charge moves in the electric field, there is work done due to the force applied. This work done, translates into kinetic energy of the charge in the electric field which is equal to the potential energy of the charge inside the electric field.
$\dfrac{1}{2}m{v^2} = qV$
where V is the electric potential
$\dfrac{1}{2}m{v^2} = qV$
$ \Rightarrow \dfrac{1}{2}\left( {mv} \right)v = qV$
Substituting the values of mv and v from the above, we get –
$\dfrac{1}{2}\left( {rBq} \right)\dfrac{{rBq}}{m} = qV$
$\Rightarrow {r^2}{B^2}{q^2} = 2mqV$
\[\Rightarrow {r^2} = \dfrac{{2mqV}}{{{B^2}{q^2}}}\]
\[\Rightarrow {r^2} = \dfrac{{2mV}}{{{B^2}q}}\]
From the above equation, we can infer that –
${r^2} \propto \dfrac{m}{q}$
Or,
$r \propto \sqrt {\dfrac{m}{q}} $
The $\alpha $- particle is the nucleus of the helium atom which has 2 protons and 2 neutrons. Thus,
Mass of $\alpha $- particle, ${m_a} = 4{m_p}$ Charge of $\alpha $- particle, ${q_a} = 2{q_p}$
By taking the ratio,
$\dfrac{{{r_a}}}{{{r_p}}} = \dfrac{{\sqrt {\dfrac{{{m_a}}}{{{q_a}}}} }}{{\sqrt {\dfrac{{{m_p}}}{{{q_p}}}} }}$
$\Rightarrow \dfrac{{{r_a}}}{{{r_p}}} = \sqrt {\dfrac{{{m_a}}}{{{m_p}}} \times \dfrac{{{q_p}}}{{{q_a}}}}$
Substituting, we get –
$ \Rightarrow \dfrac{{{r_a}}}{{{r_p}}} = \sqrt {\dfrac{{4{m_p}}}{{{m_p}}} \times \dfrac{{{q_p}}}{{2{q_p}}}} = \sqrt 2 $
Since given, ${r_p} = 10cm$
Radius traced by the $\alpha $- particle , ${r_a} = 10\sqrt 2 cm$
The correct option is Option B.
Note:The direction of force induced on the armature is given by Fleming's Left-Hand rule.
It says that if the left hand is held out as shown in the figure, by orienting the middle finger in the direction of electric field and the index finger in the direction of the magnetic field, we will be able to observe the direction of force acting on the conductor which is the same as the direction pointed by the thumb.
Lorentz Force, $L = {F_E} + {F_B}$
where ${F_E}\& {F_B}$ are the forces due to electric field E and magnetic field B respectively.
Complete step-by-step answer:
Consider the following region of space with mutually perpendicular electric field, E and magnetic field, B. The direction of electric field is from left to right and the direction of magnetic field is into the plane of paper.
Consider a particle of charge +q that is entering the region as shown.
When it enters, it experiences combined force due to an electric and magnetic field, known as Lorentz force.
$L = {F_E} + {F_B}$
Electric field, ${F_E} = qE$ This force is along the direction of the electric field.
Magnetic field, ${F_B} = q\left( {\overrightarrow v \times \overrightarrow B } \right)$ where v = velocity.
Since, there is a cross-product of velocity and magnetic field, the force will be at the perpendicular direction as that of the magnetic field.
Thus, when the combined force acts on the particle, the particle experiences a force pushing it to move upwards. However, it cannot move upwards because the resultant force acting on the particle makes it hover around in circles with the magnetic force, ${F_B}$ providing the necessary centripetal force to the rotation.
The radius of rotation,
$r = \dfrac{{mv}}{{Bq}}$
Also, $v = \dfrac{{rBq}}{m}$
And $mv = rBq$
where m and v are the mass and the velocity of the particles, respectively.
We should, also, take into consideration that there is an electric field acting on the particle.
When the charge moves in the electric field, there is work done due to the force applied. This work done, translates into kinetic energy of the charge in the electric field which is equal to the potential energy of the charge inside the electric field.
$\dfrac{1}{2}m{v^2} = qV$
where V is the electric potential
$\dfrac{1}{2}m{v^2} = qV$
$ \Rightarrow \dfrac{1}{2}\left( {mv} \right)v = qV$
Substituting the values of mv and v from the above, we get –
$\dfrac{1}{2}\left( {rBq} \right)\dfrac{{rBq}}{m} = qV$
$\Rightarrow {r^2}{B^2}{q^2} = 2mqV$
\[\Rightarrow {r^2} = \dfrac{{2mqV}}{{{B^2}{q^2}}}\]
\[\Rightarrow {r^2} = \dfrac{{2mV}}{{{B^2}q}}\]
From the above equation, we can infer that –
${r^2} \propto \dfrac{m}{q}$
Or,
$r \propto \sqrt {\dfrac{m}{q}} $
The $\alpha $- particle is the nucleus of the helium atom which has 2 protons and 2 neutrons. Thus,
Mass of $\alpha $- particle, ${m_a} = 4{m_p}$ Charge of $\alpha $- particle, ${q_a} = 2{q_p}$
By taking the ratio,
$\dfrac{{{r_a}}}{{{r_p}}} = \dfrac{{\sqrt {\dfrac{{{m_a}}}{{{q_a}}}} }}{{\sqrt {\dfrac{{{m_p}}}{{{q_p}}}} }}$
$\Rightarrow \dfrac{{{r_a}}}{{{r_p}}} = \sqrt {\dfrac{{{m_a}}}{{{m_p}}} \times \dfrac{{{q_p}}}{{{q_a}}}}$
Substituting, we get –
$ \Rightarrow \dfrac{{{r_a}}}{{{r_p}}} = \sqrt {\dfrac{{4{m_p}}}{{{m_p}}} \times \dfrac{{{q_p}}}{{2{q_p}}}} = \sqrt 2 $
Since given, ${r_p} = 10cm$
Radius traced by the $\alpha $- particle , ${r_a} = 10\sqrt 2 cm$
The correct option is Option B.
Note:The direction of force induced on the armature is given by Fleming's Left-Hand rule.
It says that if the left hand is held out as shown in the figure, by orienting the middle finger in the direction of electric field and the index finger in the direction of the magnetic field, we will be able to observe the direction of force acting on the conductor which is the same as the direction pointed by the thumb.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Collect pictures stories poems and information about class 10 social studies CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE