Answer

Verified

427.8k+ views

**Hint:**Electric dipoles will be having two charges definitely. Just like magnetic dipoles we can consider electric dipoles. In a magnetic dipole, the magnetic moment vector goes from south pole to north pole inside the magnet. We resolve that along axial and equatorial to get the magnetic fields. Similarly in electric dipole, the dipole moment vector goes from negative charge to positive charge.

**Formula used:**

$\eqalign{

& {E_{axial}} = \dfrac{{2k\mathop p\limits^ \to }}{{{r^3}}} \cr

& {E_{equitorial}} = \dfrac{{ - k\mathop p\limits^ \to }}{{{r^3}}} \cr

& {V_\theta } = \dfrac{{kp\cos \theta }}{{{r^2}}} \cr} $

**Complete answer:**

Electric field can be produced by electric dipole and due to that field potential will also be present

The position of the point determines the direction of electric field and magnitude of potential

If the point is located on the axis then we have one formula to calculate the electric field over there and if the point is located on the equatorial point then we have another formula for the electric field.

For axial point the electric field will be

${E_{axial}} = \dfrac{{2k\mathop p\limits^ \to }}{{{r^3}}}$

‘r’ is the distance between the center of dipole and the point P.

So the electric field will be along the direction of electric moment vector($\mathop p\limits^ \to $)

For equatorial point the electric field will be

${E_{equitorial}} = \dfrac{{ - k\mathop p\limits^ \to }}{{{r^3}}}$

So the equatorial electric field will be anti parallel to the direction of electric dipole moment vector($\mathop p\limits^ \to $)

The point P on the y axis at a distance d will be equatorial point for the dipole and the filed will be

$\eqalign{

& {E_{equitorial}} = \dfrac{{ - k\mathop p\limits^ \to }}{{{r^3}}} \cr

& \therefore {E_P} = \dfrac{{ - \mathop p\limits^ \to }}{{4\pi {\varepsilon _0}{d^3}}} \cr} $

Potential at point P is given as

${V_\theta } = \dfrac{{kp\cos \theta }}{{{r^2}}}$

Where theta is the angle between the dipole moment vector and the line joining the dipole and point. For all equatorial points theta will be 90 degrees. So the cosine of 90 degrees will be zero. So potential will be zero.

${V_\theta } = \dfrac{{kp\cos \theta }}{{{r^2}}}$

$\eqalign{

& \Rightarrow {V_P} = \dfrac{{kp\cos {{90}^0}}}{{{r^2}}} \cr

& \therefore {V_P} = 0 \cr} $

All these formulas are valid for short dipoles only.

**Hence option D is the answer.**

**Note:**

If the point given by them is not a perfect axial point nor perfect equatorial point i.e an oblique point then we will resolve the electric dipole moment vector into axial direction and along the equatorial direction. After resolving we will find out the direction of electric field components at that point and finally we will find the resultant.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Mark and label the given geoinformation on the outline class 11 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Trending doubts

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which are the Top 10 Largest Countries of the World?

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

How do you graph the function fx 4x class 9 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Change the following sentences into negative and interrogative class 10 english CBSE