Answer
Verified
478.8k+ views
Hint: Use the ratio of probability that is number of favourable outcomes and the total number of outcomes.
We have been given hundred 50 paise coins, fifty Rs.1 coins, twenty Rs.2 coins and ten Rs.5 coins
The total number of coins that we have in the piggy bank is
$
= 100 + 50 + 20 + 10 \\
= 180 \\
$
Now for (i)
We have to find the probability that the coin which fell will be a 50 paise coin
So the event of getting a 50 paise coin is the favourable event
This implies that Number of Favourable Outcomes $ = 100$
Now, as we know that
${\text{Probability}} = \dfrac{{{\text{Number of Favourable Outcomes}}}}{{{\text{Total number of Outcomes}}}}$
$ \Rightarrow {\text{Probability}} = \dfrac{{100}}{{180}} = \dfrac{5}{9}$
Therefore, the probability that the coin which fell will be a 50 paise coin is $\dfrac{5}{9}$.
For (ii)
We have to find the probability that the coin which fell will be of value more than Rs.1
So, the event of getting a Rs.2 or Rs.5 coin is the favourable event
This implies that Number of Favourable Outcomes $ = 20 + 10 = 30$
Now, as we know that
${\text{Probability}} = \dfrac{{{\text{Number of Favourable Outcomes}}}}{{{\text{Total number of Outcomes}}}}$
$ \Rightarrow {\text{Probability}} = \dfrac{{30}}{{180}} = \dfrac{1}{6}$
Therefore, the probability that the coin which fell will be of value more than Rs.1 is $\dfrac{1}{6}$.
For (iii)
We have to find the probability that the coin which fell will be of value less than Rs.5
So, the event of getting a 50 paise coin or Rs.1 or Rs.2 coin is the favourable event
This implies that Number of Favourable Outcomes $ = 100 + 50 + 20 = 170$
Now, as we know that
${\text{Probability}} = \dfrac{{{\text{Number of Favourable Outcomes}}}}{{{\text{Total number of Outcomes}}}}$
$ \Rightarrow {\text{Probability}} = \dfrac{{170}}{{180}} = \dfrac{{17}}{{18}}$
Therefore, the probability that the coin which fell ) will be of value less than Rs.5 is $\dfrac{{17}}{{18}}$.
For (iv)
We have to find the probability that the coin which fell will be a Rs.1 or Rs.2 coin.
So, the event of getting a Rs.1 or Rs.2 coin is the favourable event
This implies that Number of Favourable Outcomes $ = 50 + 20 = 70$
Now, as we know that
${\text{Probability}} = \dfrac{{{\text{Number of Favourable Outcomes}}}}{{{\text{Total number of Outcomes}}}}$
$ \Rightarrow {\text{Probability}} = \dfrac{{70}}{{180}} = \dfrac{7}{{18}}$
Therefore, the probability that the coin which fell ) will be of value less than Rs.5 is $\dfrac{7}{{18}}$.
Note: In this question we first find the total number of possible outcomes and then find the number of favourable outcomes for each case. Then using the formula of probability we get our answer.
We have been given hundred 50 paise coins, fifty Rs.1 coins, twenty Rs.2 coins and ten Rs.5 coins
The total number of coins that we have in the piggy bank is
$
= 100 + 50 + 20 + 10 \\
= 180 \\
$
Now for (i)
We have to find the probability that the coin which fell will be a 50 paise coin
So the event of getting a 50 paise coin is the favourable event
This implies that Number of Favourable Outcomes $ = 100$
Now, as we know that
${\text{Probability}} = \dfrac{{{\text{Number of Favourable Outcomes}}}}{{{\text{Total number of Outcomes}}}}$
$ \Rightarrow {\text{Probability}} = \dfrac{{100}}{{180}} = \dfrac{5}{9}$
Therefore, the probability that the coin which fell will be a 50 paise coin is $\dfrac{5}{9}$.
For (ii)
We have to find the probability that the coin which fell will be of value more than Rs.1
So, the event of getting a Rs.2 or Rs.5 coin is the favourable event
This implies that Number of Favourable Outcomes $ = 20 + 10 = 30$
Now, as we know that
${\text{Probability}} = \dfrac{{{\text{Number of Favourable Outcomes}}}}{{{\text{Total number of Outcomes}}}}$
$ \Rightarrow {\text{Probability}} = \dfrac{{30}}{{180}} = \dfrac{1}{6}$
Therefore, the probability that the coin which fell will be of value more than Rs.1 is $\dfrac{1}{6}$.
For (iii)
We have to find the probability that the coin which fell will be of value less than Rs.5
So, the event of getting a 50 paise coin or Rs.1 or Rs.2 coin is the favourable event
This implies that Number of Favourable Outcomes $ = 100 + 50 + 20 = 170$
Now, as we know that
${\text{Probability}} = \dfrac{{{\text{Number of Favourable Outcomes}}}}{{{\text{Total number of Outcomes}}}}$
$ \Rightarrow {\text{Probability}} = \dfrac{{170}}{{180}} = \dfrac{{17}}{{18}}$
Therefore, the probability that the coin which fell ) will be of value less than Rs.5 is $\dfrac{{17}}{{18}}$.
For (iv)
We have to find the probability that the coin which fell will be a Rs.1 or Rs.2 coin.
So, the event of getting a Rs.1 or Rs.2 coin is the favourable event
This implies that Number of Favourable Outcomes $ = 50 + 20 = 70$
Now, as we know that
${\text{Probability}} = \dfrac{{{\text{Number of Favourable Outcomes}}}}{{{\text{Total number of Outcomes}}}}$
$ \Rightarrow {\text{Probability}} = \dfrac{{70}}{{180}} = \dfrac{7}{{18}}$
Therefore, the probability that the coin which fell ) will be of value less than Rs.5 is $\dfrac{7}{{18}}$.
Note: In this question we first find the total number of possible outcomes and then find the number of favourable outcomes for each case. Then using the formula of probability we get our answer.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE