
A pendulum bob of mass 80 mg and carrying a charge of 2 × 10⁻⁸ \[coul\]is at rest in a horizontal uniform electric field of 20,000 V m⁻1. Find the tension in the thread of the pendulum.
A.8.8 × 10⁻2 N
B.8.8 × 10⁻3 N
C.8.8 × 10⁻4 N
D.8.8 ×10⁻ 5 N
Answer
564.6k+ views
Hint: The pendulum is in a rest position. All the forces i.e. components of force and the other force will be in balanced state. When we equate the horizontal and vertical forces, we can find the tension in the thread of a string.
Step by step answer: A pendulum bob is at a rest position in a uniform horizontal electric field E = 20000 Vm-1.. The mass m of bob is 80 mg i.e., 80 × 10-3 kg (1g =10-3kg) is carrying a charge q = 2 × 10⁻⁸ C and let the tension in the thread of the string be T and the angle made by the string with vertical be Ɵ. As the pendulum bob is in a rest position i.e. in equilibrium. So, all the forces acting on the bob will be in a balanced state.
$T\sin \theta = qE$ [T sin Ɵ is the component of T acting horizontally which balances the force acted due to electric field]
$T\cos \theta = mg$ [T cos Ɵ is the component of T acting vertically upwards which is balanced by the weight of the body mg]
When we divide the above two equations,
$\dfrac{{T\sin \theta }}{{T\cos \theta }} = \dfrac{{qE}}{{mg}}$
$\Rightarrow$ $\tan \theta = \dfrac{{qE}}{{mg}}\left[ {\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}} \right]$
$\Rightarrow$ \[\tan \theta = \dfrac{{2 \times {{10}^{ - 5}} \times 20000}}{{80 \times {{10}^{ - 3}} \times 10}}\]
$\Rightarrow$ $\tan \theta = 0.5$
$\Rightarrow$ ${\tan ^{ - 1}}\left( {0.5} \right)$
$\Rightarrow$ $\theta = 27\left[ {{{\tan }^{ - 1}}\left( {0.5} \right) = 26.5} \right]$
Now, from the first equation ,
$
T\sin \theta = qE \\
\Rightarrow T = \dfrac{{qE}}{{\sin \theta }} \\
\Rightarrow T = \dfrac{{2 \times {{10}^{ - 5}} \times 20000}}{{0.453}} \\
\Rightarrow T = 88300.22 \times {10^{ - 8}} \\
$\therefore$ T = 8.8 \times {10^{ - 4}} \\
$
Therefore, option C is correct.
Note: The electric field acts in a horizontal direction which balances the horizontal component of force and the weight of the bob balances the vertical component of force. In equilibrium, all the forces are in a balanced state.
Step by step answer: A pendulum bob is at a rest position in a uniform horizontal electric field E = 20000 Vm-1.. The mass m of bob is 80 mg i.e., 80 × 10-3 kg (1g =10-3kg) is carrying a charge q = 2 × 10⁻⁸ C and let the tension in the thread of the string be T and the angle made by the string with vertical be Ɵ. As the pendulum bob is in a rest position i.e. in equilibrium. So, all the forces acting on the bob will be in a balanced state.
$T\sin \theta = qE$ [T sin Ɵ is the component of T acting horizontally which balances the force acted due to electric field]
$T\cos \theta = mg$ [T cos Ɵ is the component of T acting vertically upwards which is balanced by the weight of the body mg]
When we divide the above two equations,
$\dfrac{{T\sin \theta }}{{T\cos \theta }} = \dfrac{{qE}}{{mg}}$
$\Rightarrow$ $\tan \theta = \dfrac{{qE}}{{mg}}\left[ {\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}} \right]$
$\Rightarrow$ \[\tan \theta = \dfrac{{2 \times {{10}^{ - 5}} \times 20000}}{{80 \times {{10}^{ - 3}} \times 10}}\]
$\Rightarrow$ $\tan \theta = 0.5$
$\Rightarrow$ ${\tan ^{ - 1}}\left( {0.5} \right)$
$\Rightarrow$ $\theta = 27\left[ {{{\tan }^{ - 1}}\left( {0.5} \right) = 26.5} \right]$
Now, from the first equation ,
$
T\sin \theta = qE \\
\Rightarrow T = \dfrac{{qE}}{{\sin \theta }} \\
\Rightarrow T = \dfrac{{2 \times {{10}^{ - 5}} \times 20000}}{{0.453}} \\
\Rightarrow T = 88300.22 \times {10^{ - 8}} \\
$\therefore$ T = 8.8 \times {10^{ - 4}} \\
$
Therefore, option C is correct.
Note: The electric field acts in a horizontal direction which balances the horizontal component of force and the weight of the bob balances the vertical component of force. In equilibrium, all the forces are in a balanced state.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

