Answer
Verified
444.6k+ views
Hint: We have applied the concept of de Broglie hypothesis which states that wavelength of a particle is inversely proportional to its momentum.Therefore, the smaller mass and smaller momentum of the electron means that it has a longer wavelength.
Mathematically, $\lambda \propto \dfrac{1}{p} \Rightarrow \lambda = h.\dfrac{1}{p}$ where $h$ is the Planck’s constant.
Complete step by step answer:
We write the wavelength of a particle as,
$\lambda = \dfrac{h}{p} = \dfrac{h}{{mv}}$
where $\lambda $ is the wavelength of a particle, $h$ is the Planck’s constant, $p$ is the momentum of the particle, $m$ is the mass of the particle and $v$ is the velocity of the particle. Let the wavelength of the given particle be $\lambda $ and the wavelength of an electron be ${\lambda _e}$
We assume the momentums, masses and velocities of the particle and electron as $\left( {p,{p_e}} \right),\left( {m,{m_e}} \right)\& \left( {v,{v_e}} \right)$ respectively
According to the question $\lambda = {\lambda _e}$
\[
\dfrac{h}{p} = \dfrac{h}{{{p_e}}} \\
\Rightarrow p = {p_e} \\
\Rightarrow mv = {m_e}{v_e} \\
\Rightarrow v = \dfrac{{{m_e}{v_e}}}{m} \\
\]
Substituting the given data,
$
{m_e} = 9.1 \times {10^{31}}kg,{v_e} = 3 \times {10^6}m/s, \\
\Rightarrow m = 1mg = 1 \times {10^{ - 6}}kg \\
$
\[
\Rightarrow v = \dfrac{{9.1 \times {{10}^{ - 31}} \times 3 \times {{10}^6}}}{{1 \times {{10}^{ - 6}}}} \\
\therefore v = 2.7 \times {10^{ - 18}}m/s \\
\]
Therefore, the correct answer is option B.
Note:We can also solve for the wavelength of the electron first using the value of Planck’s constant and then equate it to the wavelength of the given particle. Also, we can get a rough idea without solving for the exact answer if the options are at a wide range because from the formula we can see that The longer de Broglie wavelength of particle 1 means that it has less momentum than particle 2 because de Broglie wavelength is inversely proportional to momentum. And if the two particles have the same mass, this also means particle 1 has a smaller velocity and less kinetic energy than particle 2.
Mathematically, $\lambda \propto \dfrac{1}{p} \Rightarrow \lambda = h.\dfrac{1}{p}$ where $h$ is the Planck’s constant.
Complete step by step answer:
We write the wavelength of a particle as,
$\lambda = \dfrac{h}{p} = \dfrac{h}{{mv}}$
where $\lambda $ is the wavelength of a particle, $h$ is the Planck’s constant, $p$ is the momentum of the particle, $m$ is the mass of the particle and $v$ is the velocity of the particle. Let the wavelength of the given particle be $\lambda $ and the wavelength of an electron be ${\lambda _e}$
We assume the momentums, masses and velocities of the particle and electron as $\left( {p,{p_e}} \right),\left( {m,{m_e}} \right)\& \left( {v,{v_e}} \right)$ respectively
According to the question $\lambda = {\lambda _e}$
\[
\dfrac{h}{p} = \dfrac{h}{{{p_e}}} \\
\Rightarrow p = {p_e} \\
\Rightarrow mv = {m_e}{v_e} \\
\Rightarrow v = \dfrac{{{m_e}{v_e}}}{m} \\
\]
Substituting the given data,
$
{m_e} = 9.1 \times {10^{31}}kg,{v_e} = 3 \times {10^6}m/s, \\
\Rightarrow m = 1mg = 1 \times {10^{ - 6}}kg \\
$
\[
\Rightarrow v = \dfrac{{9.1 \times {{10}^{ - 31}} \times 3 \times {{10}^6}}}{{1 \times {{10}^{ - 6}}}} \\
\therefore v = 2.7 \times {10^{ - 18}}m/s \\
\]
Therefore, the correct answer is option B.
Note:We can also solve for the wavelength of the electron first using the value of Planck’s constant and then equate it to the wavelength of the given particle. Also, we can get a rough idea without solving for the exact answer if the options are at a wide range because from the formula we can see that The longer de Broglie wavelength of particle 1 means that it has less momentum than particle 2 because de Broglie wavelength is inversely proportional to momentum. And if the two particles have the same mass, this also means particle 1 has a smaller velocity and less kinetic energy than particle 2.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE