Answer
Verified
428.4k+ views
Hint: As a first step, you could recall that the time rate of change of velocity will give us the acceleration of the particle. As the given particle is known to be decelerating, do assign negative signs before solving. Now you could integrate the relation after necessary rearrangements by assigning the limits accordingly. After integration, apply the limits and then rearrange to get the answer.
Formula used:
Acceleration,
$a=\dfrac{dv}{dt}$
Complete Step by step solution:
In the question, we are given the deceleration of the particle as,
$a=-k\sqrt{v}$
Negative sign is an indication of deceleration. We know that acceleration is the time rate of change of velocity. A body is said to be decelerating when its velocity is being decreased.
Now we could rewrite the expression as,
$\dfrac{dv}{dt}=-k\sqrt{v}$
$\Rightarrow \dfrac{dv}{\sqrt{v}}=-kdt$
$\Rightarrow {{v}^{-\dfrac{1}{2}}}dv=-kdt$
Now let $t=0$ be the time at which the body started moving and t be the time at which it came to rest. During this period, the body’s velocity is being reduced from ${{v}_{0}}$ to 0.
Let us integrate the above relation on both sides by assigning limits accordingly.
$\int\limits_{{{v}_{0}}}^{0}{{{v}^{-\dfrac{1}{2}}}}dv=-k\int\limits_{0}^{t}{dt}$
$\Rightarrow \left[ 2{{v}^{\dfrac{1}{2}}} \right]_{{{v}_{0}}}^{0}=-k\left[ t \right]_{0}^{t}$
$\Rightarrow 0-2{{v}_{0}}^{\dfrac{1}{2}}==-kt$
$\therefore t=\dfrac{2\sqrt{{{v}_{0}}}}{k}$
Therefore, we found that the time after which the given particle will stop its motion is given by,
$t=\dfrac{2\sqrt{{{v}_{0}}}}{k}$
Hence, option C is found to be the correct answer.
Note:
For the case of one dimensional motion, deceleration is known to occur when the signs of velocity and acceleration are opposite to each other. That is, it is deceleration when acceleration is negative and velocity is positive and also when velocity is negative and acceleration is positive. To summarize we could say that deceleration occurs when velocity is directed opposite to acceleration.
Formula used:
Acceleration,
$a=\dfrac{dv}{dt}$
Complete Step by step solution:
In the question, we are given the deceleration of the particle as,
$a=-k\sqrt{v}$
Negative sign is an indication of deceleration. We know that acceleration is the time rate of change of velocity. A body is said to be decelerating when its velocity is being decreased.
Now we could rewrite the expression as,
$\dfrac{dv}{dt}=-k\sqrt{v}$
$\Rightarrow \dfrac{dv}{\sqrt{v}}=-kdt$
$\Rightarrow {{v}^{-\dfrac{1}{2}}}dv=-kdt$
Now let $t=0$ be the time at which the body started moving and t be the time at which it came to rest. During this period, the body’s velocity is being reduced from ${{v}_{0}}$ to 0.
Let us integrate the above relation on both sides by assigning limits accordingly.
$\int\limits_{{{v}_{0}}}^{0}{{{v}^{-\dfrac{1}{2}}}}dv=-k\int\limits_{0}^{t}{dt}$
$\Rightarrow \left[ 2{{v}^{\dfrac{1}{2}}} \right]_{{{v}_{0}}}^{0}=-k\left[ t \right]_{0}^{t}$
$\Rightarrow 0-2{{v}_{0}}^{\dfrac{1}{2}}==-kt$
$\therefore t=\dfrac{2\sqrt{{{v}_{0}}}}{k}$
Therefore, we found that the time after which the given particle will stop its motion is given by,
$t=\dfrac{2\sqrt{{{v}_{0}}}}{k}$
Hence, option C is found to be the correct answer.
Note:
For the case of one dimensional motion, deceleration is known to occur when the signs of velocity and acceleration are opposite to each other. That is, it is deceleration when acceleration is negative and velocity is positive and also when velocity is negative and acceleration is positive. To summarize we could say that deceleration occurs when velocity is directed opposite to acceleration.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell