
A number $x$ is chosen at random from the set $\{ 1,2,3,4,...........,100\} .$ Define the event:
$A = $ the chosen number $x$ satisfies $\dfrac{{(x - 10)(x - 50)}}{{(x - 30)}} \geqslant 0.$ Then $P(A)$is :
Answer
614.4k+ views
Hint-Wavy curve method defined as the limit of x from the given equation. And probability is the ratio of favorable number of outcomes to the total number of outcomes. With the help of these definitions we will solve the question.
Given that:
$ \Rightarrow \dfrac{{(x - 10)(x - 50)}}{{(x - 30)}} \geqslant 0$
We will use the wavy curve method to find the solution of the above equation.
By wavy curve method, the solution is
$\{ 10,11,12,..........29\} U\{ 50,51,......100\} $
The value of $x = 30$ is neglected because it does not satisfy the above equation, therefore
$
n(A) = 20 + 51 \\
= 71 \\
$
The probability of chosen no satisfies the given equation is
$
P(A) = \dfrac{{n(A)}}{{n(Givenset)}} \\
= \dfrac{{71}}{{100}} = 0.71 \\
$
Hence probability of the event is 0.71
Note- This problem combines the concept of both probability and solutions of polynomial equations. For this problem the sample space is a solution of the polynomial equation which we found using a wavy curve method. In probability problems first we have to define the event and then sample space. After this we proceed further to solve the problem.
Given that:
$ \Rightarrow \dfrac{{(x - 10)(x - 50)}}{{(x - 30)}} \geqslant 0$
We will use the wavy curve method to find the solution of the above equation.
By wavy curve method, the solution is
$\{ 10,11,12,..........29\} U\{ 50,51,......100\} $
The value of $x = 30$ is neglected because it does not satisfy the above equation, therefore
$
n(A) = 20 + 51 \\
= 71 \\
$
The probability of chosen no satisfies the given equation is
$
P(A) = \dfrac{{n(A)}}{{n(Givenset)}} \\
= \dfrac{{71}}{{100}} = 0.71 \\
$
Hence probability of the event is 0.71
Note- This problem combines the concept of both probability and solutions of polynomial equations. For this problem the sample space is a solution of the polynomial equation which we found using a wavy curve method. In probability problems first we have to define the event and then sample space. After this we proceed further to solve the problem.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

