
A motor requires $2\sec $ to go from a speed of$60rpm$ to$120rpm$ with a constant acceleration. Number of revolutions it takes in this time is
A. $1.50$
B. $4.5$
C. $3$
D. $6.0$
Answer
511.8k+ views
Hint:-Recall the concept of angular velocity. It is the velocity at which the particle rotates around a canter or a point in the given time. It is also known as rotational velocity. It shows how fast the position of an object changes with time.
Complete step-by-step solution:
Step I:
Given that time $t = 2\sec $
$N1 = 60rpm$
1minute = 60seconds
$60rpm = \dfrac{{60}}{{60}} = 1 revolution per second$
Similarly $N2 = 120rpm$
$120rpm = \dfrac{{120}}{{60}} = 2 revolution per seconds$
Step II:
Formula for angular velocity is written as $\omega = 2n\pi $
Where $\omega $ is the angular velocity
${\omega _1} = 2{n_1}\pi $
${\omega _1} = 2 \times 1 \times \pi $
${\omega _1} = 2\pi rad/\sec $
Similarly, ${\omega _2} = 2 \times N2 \times \pi $
${\omega _2} = 2 \times 2 \times \pi $
${\omega _2} = 4\pi rad/\sec $
Step III:
Also the angular acceleration of the body is given by
$ \propto = \dfrac{{{\omega _2} - {\omega _1}}}{T}$
$ \propto = \dfrac{{4\pi - 2\pi }}{2}$
$ \propto = \dfrac{{2\pi }}{2}$
$ \propto = \pi rad/{\sec ^2}$
Step IV:
Angular displacement is the shortest angle between the initial and final positions for a given object having circular motion. It has both magnitude and direction. It is the angle of movement of a body in the circular path. So it is a vector quantity. It is known that if the angular acceleration, initial velocity and time are given, then angular displacement can be calculated using the formula
$\theta = \omega t + \dfrac{1}{2} \propto {t^2}$
Where $\theta $ is angular displacement
$\omega $ is the initial angular velocity
$t$ is the time taken
$ \propto $ is the angular acceleration
$\theta = 2\pi \times 2 + \dfrac{1}{2}\pi {(2)^2}$
$\theta = 4\pi + 2\pi $
$\theta = 6\pi $
Step V:
To measure an angle, a radian is used. There are $2\pi $ radians in one complete revolution. Hence,
Number of revolutions is given by $ = \dfrac{{6\pi }}{{2\pi }} = 3$.
Option C is the right answer.
Note:- It is to be noted that the terms angular acceleration and radial acceleration are different terms. Angular acceleration is the rate of change of angular velocity with time. An object with angular velocity will either rotate faster or slower. On the other hand, when an object undergoes circular motion then it shows radial acceleration.
Complete step-by-step solution:
Step I:
Given that time $t = 2\sec $
$N1 = 60rpm$
1minute = 60seconds
$60rpm = \dfrac{{60}}{{60}} = 1 revolution per second$
Similarly $N2 = 120rpm$
$120rpm = \dfrac{{120}}{{60}} = 2 revolution per seconds$
Step II:
Formula for angular velocity is written as $\omega = 2n\pi $
Where $\omega $ is the angular velocity
${\omega _1} = 2{n_1}\pi $
${\omega _1} = 2 \times 1 \times \pi $
${\omega _1} = 2\pi rad/\sec $
Similarly, ${\omega _2} = 2 \times N2 \times \pi $
${\omega _2} = 2 \times 2 \times \pi $
${\omega _2} = 4\pi rad/\sec $
Step III:
Also the angular acceleration of the body is given by
$ \propto = \dfrac{{{\omega _2} - {\omega _1}}}{T}$
$ \propto = \dfrac{{4\pi - 2\pi }}{2}$
$ \propto = \dfrac{{2\pi }}{2}$
$ \propto = \pi rad/{\sec ^2}$
Step IV:
Angular displacement is the shortest angle between the initial and final positions for a given object having circular motion. It has both magnitude and direction. It is the angle of movement of a body in the circular path. So it is a vector quantity. It is known that if the angular acceleration, initial velocity and time are given, then angular displacement can be calculated using the formula
$\theta = \omega t + \dfrac{1}{2} \propto {t^2}$
Where $\theta $ is angular displacement
$\omega $ is the initial angular velocity
$t$ is the time taken
$ \propto $ is the angular acceleration
$\theta = 2\pi \times 2 + \dfrac{1}{2}\pi {(2)^2}$
$\theta = 4\pi + 2\pi $
$\theta = 6\pi $
Step V:
To measure an angle, a radian is used. There are $2\pi $ radians in one complete revolution. Hence,
Number of revolutions is given by $ = \dfrac{{6\pi }}{{2\pi }} = 3$.
Option C is the right answer.
Note:- It is to be noted that the terms angular acceleration and radial acceleration are different terms. Angular acceleration is the rate of change of angular velocity with time. An object with angular velocity will either rotate faster or slower. On the other hand, when an object undergoes circular motion then it shows radial acceleration.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The first general election of Lok Sabha was held in class 12 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Derive an expression for electric potential at point class 12 physics CBSE
