
A man in a balloon rising vertically with an acceleration of \[4.9\,m/{s^2}\] releases a ball 2 sec after the balloon is let go from the ground. The greatest height above the ground reaches by the ball is $(g = 9.8\,m/{s^2})$
A) $14.7\,m$
B) $19.6\,m$
C) $9.8\,m$
D) $24.5\,m$
Answer
232.8k+ views
Hint: In this solution, we will use the second and the third equation of kinematics. We will first find the height of the balloon at 2 seconds and then the maximum possible height that can be achieved by the ball.
Formula used: In this solution, we will use the following formulae:
1- First equation of kinematics: $v = u + at$ where $v$ is the final velocity of an object with initial velocity $u$ under acceleration $a$ in time $t$
2- Second equation of kinematics: $d = ut + \dfrac{1}{2}a{t^2}$where $d$ is the distance travelled by the object with initial velocity $u$ under acceleration $a$ in time $t$
3-Third equation of kinematics: ${v^2} = {u^2} + 2ad$ where $v$ is the final velocity of the object, $d$ is the distance the object travels
Complete step by step answer:
We know that the balloon starts rising with an acceleration of $4.9\,m/{s^2}$ . Initially, the velocity of the balloon is zero. Then in two seconds, it will achieve a height of
$d = 0(2) + \dfrac{1}{2}(4.9){(2)^2}$
$ \Rightarrow d = 9.8\,m$
At this point, the man releases the ball with an initial velocity equal to the velocity of the balloon.
The velocity of the balloon at 2 seconds will be
$v = 0 + (4.9)(2)$
$ \Rightarrow v = 9.8\,m/s$
This will also be the velocity of the ball when it is released. Then the extra height achieved by the ball will be determined from the third equation of kinematics as
${0^2} = {2^2} - 2(9.8)(h)$
Which give us the height
$h = \dfrac{4}{{2 \times 9.8}}$
$ \Rightarrow h = 4.9\,m$
Hence the maximum height of the balloon above the ground will be
$h' = h + d$
$ \Rightarrow h' = 4.9 + 9.8$
Which gives us
$h' = 14.7\,m$ hence the correct choice will be option (A).
Note: When the ball is released from the balloon, the only force that will act on it is gravitational force and hence it will experience gravitational acceleration. The gravitational acceleration will be downwards, which is why we use a negative sign in the third equation of kinematics. After reaching the topmost point, the ball will start falling back to the ground.
Formula used: In this solution, we will use the following formulae:
1- First equation of kinematics: $v = u + at$ where $v$ is the final velocity of an object with initial velocity $u$ under acceleration $a$ in time $t$
2- Second equation of kinematics: $d = ut + \dfrac{1}{2}a{t^2}$where $d$ is the distance travelled by the object with initial velocity $u$ under acceleration $a$ in time $t$
3-Third equation of kinematics: ${v^2} = {u^2} + 2ad$ where $v$ is the final velocity of the object, $d$ is the distance the object travels
Complete step by step answer:
We know that the balloon starts rising with an acceleration of $4.9\,m/{s^2}$ . Initially, the velocity of the balloon is zero. Then in two seconds, it will achieve a height of
$d = 0(2) + \dfrac{1}{2}(4.9){(2)^2}$
$ \Rightarrow d = 9.8\,m$
At this point, the man releases the ball with an initial velocity equal to the velocity of the balloon.
The velocity of the balloon at 2 seconds will be
$v = 0 + (4.9)(2)$
$ \Rightarrow v = 9.8\,m/s$
This will also be the velocity of the ball when it is released. Then the extra height achieved by the ball will be determined from the third equation of kinematics as
${0^2} = {2^2} - 2(9.8)(h)$
Which give us the height
$h = \dfrac{4}{{2 \times 9.8}}$
$ \Rightarrow h = 4.9\,m$
Hence the maximum height of the balloon above the ground will be
$h' = h + d$
$ \Rightarrow h' = 4.9 + 9.8$
Which gives us
$h' = 14.7\,m$ hence the correct choice will be option (A).
Note: When the ball is released from the balloon, the only force that will act on it is gravitational force and hence it will experience gravitational acceleration. The gravitational acceleration will be downwards, which is why we use a negative sign in the third equation of kinematics. After reaching the topmost point, the ball will start falling back to the ground.
Recently Updated Pages
Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

