Answer
Verified
468.3k+ views
Hint: First look at the condition asked, then find the probability of the man getting selected, then from that find the probability of not getting a man selected. Similarly, find the probability of getting a woman selected and the probability of women not getting selected. And then proceed for the final step.
Complete step-by-step answer:
Let \[{E_1}\] be the event that man will be selected and \[{E_2}\] be the event that woman will be selected.
Thus, the probability of a man getting selected is \[P({E_1}) = \dfrac{1}{4}\].
∴ Probability of man not getting selected is \[P({\bar E_1}) = 1 - \dfrac{1}{4}\]
Similarly, probability of woman getting selected is \[P({E_2}) = \dfrac{1}{3}\]
∴ Probability of woman not getting selected is \[P({\bar E_2}) = 1 - \dfrac{1}{3}\]
Now the probability of none getting selected is given by
\[P({\bar E_1} \cap {\bar E_2}) = P({\bar E_1}) \times P({\bar E_2})\]
=\[\dfrac{3}{4} \times \dfrac{2}{3}\]
=\[\dfrac{1}{2}\]
∴ The correct option is ‘a’.
Note: In this question the three events are of independent nature, the general formula for their probability is given by the formula below, say these two events are \[{E_1}\] and \[{E_2}\] \[P({E_1} \cap {E_2}) = P({E_1}) \times P({E_2})\]
Complete step-by-step answer:
Let \[{E_1}\] be the event that man will be selected and \[{E_2}\] be the event that woman will be selected.
Thus, the probability of a man getting selected is \[P({E_1}) = \dfrac{1}{4}\].
∴ Probability of man not getting selected is \[P({\bar E_1}) = 1 - \dfrac{1}{4}\]
Similarly, probability of woman getting selected is \[P({E_2}) = \dfrac{1}{3}\]
∴ Probability of woman not getting selected is \[P({\bar E_2}) = 1 - \dfrac{1}{3}\]
Now the probability of none getting selected is given by
\[P({\bar E_1} \cap {\bar E_2}) = P({\bar E_1}) \times P({\bar E_2})\]
=\[\dfrac{3}{4} \times \dfrac{2}{3}\]
=\[\dfrac{1}{2}\]
∴ The correct option is ‘a’.
Note: In this question the three events are of independent nature, the general formula for their probability is given by the formula below, say these two events are \[{E_1}\] and \[{E_2}\] \[P({E_1} \cap {E_2}) = P({E_1}) \times P({E_2})\]
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
10 examples of evaporation in daily life with explanations
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Name 10 Living and Non living things class 9 biology CBSE