
A letter lock consists of three rings marked with 15 different letters. If N denotes the number of ways in which it is possible to make unsuccessful attempts to open the lock then,
(A) 48 divides N
(B) N is the product of 3 distinct prime numbers
(C) N is the product of 4 distinct prime numbers
(D) None of these.
Answer
508.8k+ views
Hint: We will have to determine no. of samples of 3 rings with 15 different letters first. Then find no. of time someone successfully open the lock and no. of time someone unsuccessfully to open the lock. Finally, we will determine the numerical feature of N accordingly as asked.
Complete step-by-step answer:
Let’s assume a lock which have three rings but 2 letters so,
$\left( {AAA} \right),\left( {AAB} \right)$
$
\left( {ABA} \right),\left( {ABB} \right) \\
\left( {BAA} \right),\left( {BAB} \right) \\
\left( {BBA} \right),\left( {BBB} \right) \\
$
These are total 8 i.e. ${2^3}$.
Thus, we may apply this logic to determine the no. of samples of 3 rings with 15 letters lock and then look at the options.
No. of samples of three rings with 15 different letters = ${15^3} = 3375$
But, out of all these permutations only one pattern will be the correct one.
$\therefore $ No. unsuccessful attempts will be (3375-1) = 3374
Now, by factorization of 3374 we will get,
$3374 = 2 \times 7 \times 241$
So, its Prime factors are 2, 7, 241.
$\therefore $ N is the product of 3 distinct prime numbers.
So, the correct answer is “Option B”.
Note: We need to understand the concepts about probability as well as the permutations and combinations. Also, the concept of events and arrangement making will have an important role for solving such problems. Number systems and their various rules are very much applicable for such solutions
Complete step-by-step answer:
Let’s assume a lock which have three rings but 2 letters so,
$\left( {AAA} \right),\left( {AAB} \right)$
$
\left( {ABA} \right),\left( {ABB} \right) \\
\left( {BAA} \right),\left( {BAB} \right) \\
\left( {BBA} \right),\left( {BBB} \right) \\
$
These are total 8 i.e. ${2^3}$.
Thus, we may apply this logic to determine the no. of samples of 3 rings with 15 letters lock and then look at the options.
No. of samples of three rings with 15 different letters = ${15^3} = 3375$
But, out of all these permutations only one pattern will be the correct one.
$\therefore $ No. unsuccessful attempts will be (3375-1) = 3374
Now, by factorization of 3374 we will get,
$3374 = 2 \times 7 \times 241$
So, its Prime factors are 2, 7, 241.
$\therefore $ N is the product of 3 distinct prime numbers.
So, the correct answer is “Option B”.
Note: We need to understand the concepts about probability as well as the permutations and combinations. Also, the concept of events and arrangement making will have an important role for solving such problems. Number systems and their various rules are very much applicable for such solutions
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What is virtual and erect image ?

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE

Write any three uses of polaroids class 12 physics CBSE

