A is an involuntary matrix by A = \[\left[ {\begin{array}{*{20}{c}}
0&1&{ - 1} \\
4&{ - 3}&4 \\
3&{ - 3}&4
\end{array}} \right]\] then the inverse of $\dfrac{{\text{A}}}{2}$ will be
A. 2A
B. $\dfrac{{{{\text{A}}^{ - 1}}}}{2}$
C. $\dfrac{{\text{A}}}{2}$${{\text{A}}^{ - 1}}$
D. ${{\text{A}}^2}$
Last updated date: 23rd Mar 2023
•
Total views: 306k
•
Views today: 6.84k
Answer
306k+ views
Hint: In this question we will use the property of matrices according to the question to solve the given problem.
Complete step-by-step answer:
Now, according to question A is involuntary matrix which means ${{\text{A}}^2} = {\text{I}}$ where ${\text{I}}$ is an Identity matrix which is a square matrix. All the diagonal elements of the identity matrix have value equal to 1. Except diagonal elements all other elements have value which is equal to 0. Now, using the property ${{\text{A}}^2} = {\text{I}}$, we get
${{\text{A}}^2} = {\text{I}}$ $ \Rightarrow $ ${\text{AA}} = {\text{I}}$ $ \Rightarrow $ ${\text{A = }}{{\text{A}}^{ - 1}}$ where ${{\text{A}}^{ - 1}}$ is the inverse of A.
Now, ${\text{AA}} = {\text{I}}$ …… (1)
Multiply and divide the left-hand side by 2, we get
$\dfrac{{\text{A}}}{2}(2{\text{A) = I}}$ , where 2A is the inverse of $\dfrac{{\text{A}}}{2}$.
So, the answer is option (A) i.e. 2A.
Note: In such types of problems most of the students start finding the inverse asked in the question by applying the longer method i.e. by finding the adjoint and modulus of the matrix which is a very tedious process. Such questions are easy and are solved by just applying the property. We can solve them in just a few lines.
Complete step-by-step answer:
Now, according to question A is involuntary matrix which means ${{\text{A}}^2} = {\text{I}}$ where ${\text{I}}$ is an Identity matrix which is a square matrix. All the diagonal elements of the identity matrix have value equal to 1. Except diagonal elements all other elements have value which is equal to 0. Now, using the property ${{\text{A}}^2} = {\text{I}}$, we get
${{\text{A}}^2} = {\text{I}}$ $ \Rightarrow $ ${\text{AA}} = {\text{I}}$ $ \Rightarrow $ ${\text{A = }}{{\text{A}}^{ - 1}}$ where ${{\text{A}}^{ - 1}}$ is the inverse of A.
Now, ${\text{AA}} = {\text{I}}$ …… (1)
Multiply and divide the left-hand side by 2, we get
$\dfrac{{\text{A}}}{2}(2{\text{A) = I}}$ , where 2A is the inverse of $\dfrac{{\text{A}}}{2}$.
So, the answer is option (A) i.e. 2A.
Note: In such types of problems most of the students start finding the inverse asked in the question by applying the longer method i.e. by finding the adjoint and modulus of the matrix which is a very tedious process. Such questions are easy and are solved by just applying the property. We can solve them in just a few lines.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
