Answer
Verified
458.4k+ views
Hint: We are asked to find the conditional probability. For that, first, find the possible outcomes for having two children and then we define the events as E- both the children are boys and F- at least one of the children is a boy. We know that \[P\left( E|F \right)\] is given as \[P\left( E|F \right)=\dfrac{P\left( E\cap F \right)}{P\left( F \right)}.\] We use this to get the required probability.
Complete step-by-step answer:
We are given that a family has two children, it can be a boy or a girl. Let us consider girls to be denoted by ‘g’ and boys to be denoted by ‘b’. So the possible outcome for a family having 2 children are
\[S=\left\{ \left( b,b \right),\left( b,g \right),\left( g,b \right),\left( g,g \right) \right\}\]
Now, we have to find the probability that the children are both boys given that at least one of them is a boy. To do so, we will consider two events as follows.
E: Both the children are boys
F: At least one of the children is a boy.
We have to find \[P\left( E|F \right)\] that says \[P\left( E|F \right)\] is the probability of event E given that we have event F.
We know that, \[P\left( E|F \right)\] is given as,
\[P\left( E|F \right)=\dfrac{P\left( E\cap F \right)}{P\left( F \right)}\]
To find the required answer, we will first have to find \[P\left( E\cap F \right)\] and P(F).
Now, F = At least one of the children is a boy. So, the outcome for F are \[\left\{ \left( a,b \right),\left( b,g \right),\left( b,b \right) \right\}.\]
So,
\[P\left( F \right)=\dfrac{\text{Favorable Number of Outcomes for F}}{\text{Total Number of Outcomes}}\]
\[\Rightarrow P\left( F \right)=\dfrac{3}{4}\]
Now, let us consider E = Both the children are boys. So, the outcomes for E are \[\left\{ \left( b,b \right) \right\}.\]
So, \[E\cap F=\left\{ \left( b,b \right) \right\}\]
Hence,
\[P\left( E\cap F \right)=\dfrac{\text{Favorable Number of Outcomes for E}\cap \text{F}}{\text{Total Number of Outcomes}}\]
\[\Rightarrow P\left( E\cap F \right)=\dfrac{1}{4}\]
Now, we have, \[P\left( E\cap F \right)=\dfrac{1}{4}\] and \[P\left( F \right)=\dfrac{3}{4}.\] Using this in \[P\left( E|F \right),\] we get,
\[P\left( E|F \right)=\dfrac{P\left( E\cap F \right)}{P\left( F \right)}\]
By putting the values in the above equation, we get,
\[P\left( E|F \right)=\dfrac{\dfrac{1}{4}}{\dfrac{3}{4}}\]
Cancelling out 4 from both numerator and denominator, we get,
\[P\left( E|F \right)=\dfrac{1}{3}\]
Therefore, the probability of having 2 children both boys given and that at least one of them is a boy is \[\dfrac{1}{3}.\]
Note: Here, in this question, we are asked a conditional probability. Students should always keep in mind to use the formula \[P\left( E|F \right)=\dfrac{P\left( E\cap F \right)}{P\left( F \right)}.\] And not directly apply the formula \[P\left( 2\text{ boys} \right)=\dfrac{\text{Outcome of having 1 boy}}{\text{Total Outcomes}}\]
This will lead us to a wrong answer as the outcome for having 2 boys are {(b, b)} and the total outcome is 4. So, \[P\left( \text{having 2 children both boys} \right)=\dfrac{1}{4}\] which is not the correct solution. Also, keep in mind that at least 1 means that there should be 1 or more than 1. So, all the cases including 1 or more than that will be included.
Complete step-by-step answer:
We are given that a family has two children, it can be a boy or a girl. Let us consider girls to be denoted by ‘g’ and boys to be denoted by ‘b’. So the possible outcome for a family having 2 children are
\[S=\left\{ \left( b,b \right),\left( b,g \right),\left( g,b \right),\left( g,g \right) \right\}\]
Now, we have to find the probability that the children are both boys given that at least one of them is a boy. To do so, we will consider two events as follows.
E: Both the children are boys
F: At least one of the children is a boy.
We have to find \[P\left( E|F \right)\] that says \[P\left( E|F \right)\] is the probability of event E given that we have event F.
We know that, \[P\left( E|F \right)\] is given as,
\[P\left( E|F \right)=\dfrac{P\left( E\cap F \right)}{P\left( F \right)}\]
To find the required answer, we will first have to find \[P\left( E\cap F \right)\] and P(F).
Now, F = At least one of the children is a boy. So, the outcome for F are \[\left\{ \left( a,b \right),\left( b,g \right),\left( b,b \right) \right\}.\]
So,
\[P\left( F \right)=\dfrac{\text{Favorable Number of Outcomes for F}}{\text{Total Number of Outcomes}}\]
\[\Rightarrow P\left( F \right)=\dfrac{3}{4}\]
Now, let us consider E = Both the children are boys. So, the outcomes for E are \[\left\{ \left( b,b \right) \right\}.\]
So, \[E\cap F=\left\{ \left( b,b \right) \right\}\]
Hence,
\[P\left( E\cap F \right)=\dfrac{\text{Favorable Number of Outcomes for E}\cap \text{F}}{\text{Total Number of Outcomes}}\]
\[\Rightarrow P\left( E\cap F \right)=\dfrac{1}{4}\]
Now, we have, \[P\left( E\cap F \right)=\dfrac{1}{4}\] and \[P\left( F \right)=\dfrac{3}{4}.\] Using this in \[P\left( E|F \right),\] we get,
\[P\left( E|F \right)=\dfrac{P\left( E\cap F \right)}{P\left( F \right)}\]
By putting the values in the above equation, we get,
\[P\left( E|F \right)=\dfrac{\dfrac{1}{4}}{\dfrac{3}{4}}\]
Cancelling out 4 from both numerator and denominator, we get,
\[P\left( E|F \right)=\dfrac{1}{3}\]
Therefore, the probability of having 2 children both boys given and that at least one of them is a boy is \[\dfrac{1}{3}.\]
Note: Here, in this question, we are asked a conditional probability. Students should always keep in mind to use the formula \[P\left( E|F \right)=\dfrac{P\left( E\cap F \right)}{P\left( F \right)}.\] And not directly apply the formula \[P\left( 2\text{ boys} \right)=\dfrac{\text{Outcome of having 1 boy}}{\text{Total Outcomes}}\]
This will lead us to a wrong answer as the outcome for having 2 boys are {(b, b)} and the total outcome is 4. So, \[P\left( \text{having 2 children both boys} \right)=\dfrac{1}{4}\] which is not the correct solution. Also, keep in mind that at least 1 means that there should be 1 or more than 1. So, all the cases including 1 or more than that will be included.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The only snake that builds a nest is a Krait b King class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE
Which places in India experience sunrise first and class 9 social science CBSE