Answer
Verified
408.9k+ views
Hint We can obtain the equation of the resulting current through the wire by adding the direct current to the alternating current. The effective value of current is equal to the root mean square value of the current. So we need to take the square, calculate its mean by integrating it over a time period, and take the square root to obtain the RMS value which will be the required effective current.
Complete step-by-step solution:
Since the direct current is superimposed over the alternating current, the resulting current will be equal to the sum of the direct and the alternating current. So we have
${I_R} = {I_{dc}} + {I_{ac}}$
According to the question, ${I_{dc}} = 5{\text{A}}$ and ${I_{ac}} = 10\sin \omega t$. Substituting these in the above equation, we get the resultant current as
${I_R} = 5 + 10\sin \omega t$
Now, we know that the effective value of the current is nothing but the RMS, or the root mean square value of the current. By the definition of RMS, we have to take the square, then take the mean, and finally take the square root of the current. So on squaring both sides of the above equation, we get
${I_R}^2 = {\left( {5 + 10\sin \omega t} \right)^2}$
We know that ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$. So we write the above equation as
${I_R}^2 = {5^2} + 2\left( 5 \right)\left( {10\sin \omega t} \right) + {\left( {10\sin \omega t} \right)^2}$
$ \Rightarrow {I_R}^2 = 25 + 100\sin \omega t + 100{\sin ^2}\omega t$ (1)
Now, we know that the mean of a function is given by
$M = \dfrac{1}{T}\int_0^T {f\left( t \right)dt} $
The period of the function ${I_R}^2$ is clearly equal to $\dfrac{{2\pi }}{\omega }$. So we integrate it from $0$ to $\dfrac{{2\pi }}{\omega }$ to get its mean as
\[M = \dfrac{1}{{2\pi /\omega }}\int_0^{\dfrac{{2\pi }}{\omega }} {{I_R}^2dt} \]
\[ \Rightarrow M = \dfrac{\omega }{{2\pi }}\int_0^{\dfrac{{2\pi }}{\omega }} {{I_R}^2dt} \]
Putting (1) above, we get
\[ \Rightarrow M = \dfrac{\omega }{{2\pi }}\int_0^{\dfrac{{2\pi }}{\omega }} {\left( {25 + 100\sin \omega t + 100{{\sin }^2}\omega t} \right)dt} \]
\[ \Rightarrow M = \dfrac{\omega }{{2\pi }}\left( {\int_0^{\dfrac{{2\pi }}{\omega }} {25dt} + \int_0^{\dfrac{{2\pi }}{\omega }} {100\sin \omega tdt} + \int_0^{\dfrac{{2\pi }}{\omega }} {100{{\sin }^2}\omega tdt} } \right)\]
We know that the average value of the sinusoidal functions is equal to zero. So we can put \[\int_0^{\dfrac{{2\pi }}{\omega }} {100\sin \omega tdt} = 0\] in the above equation to get
\[M = \dfrac{\omega }{{2\pi }}\left( {\int_0^{\dfrac{{2\pi }}{\omega }} {25dt} + \int_0^{\dfrac{{2\pi }}{\omega }} {100{{\sin }^2}\omega tdt} } \right)\]
We know that ${\sin ^2}\theta = \dfrac{{1 - \cos 2\theta }}{2}$. So we write the above equation as\[M = \dfrac{\omega }{{2\pi }}\left( {\int_0^{\dfrac{{2\pi }}{\omega }} {25dt} + \int_0^{\dfrac{{2\pi }}{\omega }} {100\left( {\dfrac{{1 - \cos 2\omega t}}{2}} \right)dt} } \right)\]
\[ \Rightarrow M = \dfrac{\omega }{{2\pi }}\left( {25\int_0^{\dfrac{{2\pi }}{\omega }} {dt} + 50\int_0^{\dfrac{{2\pi }}{\omega }} {\left( {1 - \cos 2\omega t} \right)dt} } \right)\]
\[ \Rightarrow M = \dfrac{\omega }{{2\pi }}\left( {25\int_0^{\dfrac{{2\pi }}{\omega }} {dt} + 50\int_0^{\dfrac{{2\pi }}{\omega }} {dt} - \int_0^{\dfrac{{2\pi }}{\omega }} {\cos 2\omega tdt} } \right)\]
We know that $\int {dt} = t$. So we get
\[ \Rightarrow M = \dfrac{\omega }{{2\pi }}\left( {25\left[ t \right]_0^{\dfrac{{2\pi }}{\omega }} + 5025\left[ t \right]_0^{\dfrac{{2\pi }}{\omega }} - 50\int_0^{\dfrac{{2\pi }}{\omega }} {\cos 2\omega tdt} } \right)\]
\[ \Rightarrow M = \dfrac{\omega }{{2\pi }}\left( {25\left( {\dfrac{{2\pi }}{\omega }} \right) + 50\left( {\dfrac{{2\pi }}{\omega }} \right) - \int_0^{\dfrac{{2\pi }}{\omega }} {\cos 2\omega tdt} } \right)\]
Since $\cos 2\omega t$ is also sinusoidal, its average over a cycle will also be zero, that is, \[\int_0^{\dfrac{{2\pi }}{\omega }} {\cos 2\omega tdt} = 0\].
\[ \Rightarrow M = \dfrac{\omega }{{2\pi }}\left( {25\left( {\dfrac{{2\pi }}{\omega }} \right) + 50\left( {\dfrac{{2\pi }}{\omega }} \right)} \right)\]
\[ \Rightarrow M = \left( {25 + 50} \right) = 75{{\text{A}}^2}\]
Now, we take the square root of this mean value to get the final RMS value of the resulting current as
$RMS = \sqrt M $
\[ \Rightarrow RMS = \sqrt {75} {\text{A}} = 5\sqrt 3 {\text{A}}\]
Thus the effective value of the resulting current is equal to \[5\sqrt 3 {\text{A}}\].
Hence, the correct answer is option B.
Note: We can integrate the square of the current between any time interval which makes a complete time period. But it will be convenient to set the lower limit of the integral equal to zero. So we chose the period from $0$ to $2\pi $.
Complete step-by-step solution:
Since the direct current is superimposed over the alternating current, the resulting current will be equal to the sum of the direct and the alternating current. So we have
${I_R} = {I_{dc}} + {I_{ac}}$
According to the question, ${I_{dc}} = 5{\text{A}}$ and ${I_{ac}} = 10\sin \omega t$. Substituting these in the above equation, we get the resultant current as
${I_R} = 5 + 10\sin \omega t$
Now, we know that the effective value of the current is nothing but the RMS, or the root mean square value of the current. By the definition of RMS, we have to take the square, then take the mean, and finally take the square root of the current. So on squaring both sides of the above equation, we get
${I_R}^2 = {\left( {5 + 10\sin \omega t} \right)^2}$
We know that ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$. So we write the above equation as
${I_R}^2 = {5^2} + 2\left( 5 \right)\left( {10\sin \omega t} \right) + {\left( {10\sin \omega t} \right)^2}$
$ \Rightarrow {I_R}^2 = 25 + 100\sin \omega t + 100{\sin ^2}\omega t$ (1)
Now, we know that the mean of a function is given by
$M = \dfrac{1}{T}\int_0^T {f\left( t \right)dt} $
The period of the function ${I_R}^2$ is clearly equal to $\dfrac{{2\pi }}{\omega }$. So we integrate it from $0$ to $\dfrac{{2\pi }}{\omega }$ to get its mean as
\[M = \dfrac{1}{{2\pi /\omega }}\int_0^{\dfrac{{2\pi }}{\omega }} {{I_R}^2dt} \]
\[ \Rightarrow M = \dfrac{\omega }{{2\pi }}\int_0^{\dfrac{{2\pi }}{\omega }} {{I_R}^2dt} \]
Putting (1) above, we get
\[ \Rightarrow M = \dfrac{\omega }{{2\pi }}\int_0^{\dfrac{{2\pi }}{\omega }} {\left( {25 + 100\sin \omega t + 100{{\sin }^2}\omega t} \right)dt} \]
\[ \Rightarrow M = \dfrac{\omega }{{2\pi }}\left( {\int_0^{\dfrac{{2\pi }}{\omega }} {25dt} + \int_0^{\dfrac{{2\pi }}{\omega }} {100\sin \omega tdt} + \int_0^{\dfrac{{2\pi }}{\omega }} {100{{\sin }^2}\omega tdt} } \right)\]
We know that the average value of the sinusoidal functions is equal to zero. So we can put \[\int_0^{\dfrac{{2\pi }}{\omega }} {100\sin \omega tdt} = 0\] in the above equation to get
\[M = \dfrac{\omega }{{2\pi }}\left( {\int_0^{\dfrac{{2\pi }}{\omega }} {25dt} + \int_0^{\dfrac{{2\pi }}{\omega }} {100{{\sin }^2}\omega tdt} } \right)\]
We know that ${\sin ^2}\theta = \dfrac{{1 - \cos 2\theta }}{2}$. So we write the above equation as\[M = \dfrac{\omega }{{2\pi }}\left( {\int_0^{\dfrac{{2\pi }}{\omega }} {25dt} + \int_0^{\dfrac{{2\pi }}{\omega }} {100\left( {\dfrac{{1 - \cos 2\omega t}}{2}} \right)dt} } \right)\]
\[ \Rightarrow M = \dfrac{\omega }{{2\pi }}\left( {25\int_0^{\dfrac{{2\pi }}{\omega }} {dt} + 50\int_0^{\dfrac{{2\pi }}{\omega }} {\left( {1 - \cos 2\omega t} \right)dt} } \right)\]
\[ \Rightarrow M = \dfrac{\omega }{{2\pi }}\left( {25\int_0^{\dfrac{{2\pi }}{\omega }} {dt} + 50\int_0^{\dfrac{{2\pi }}{\omega }} {dt} - \int_0^{\dfrac{{2\pi }}{\omega }} {\cos 2\omega tdt} } \right)\]
We know that $\int {dt} = t$. So we get
\[ \Rightarrow M = \dfrac{\omega }{{2\pi }}\left( {25\left[ t \right]_0^{\dfrac{{2\pi }}{\omega }} + 5025\left[ t \right]_0^{\dfrac{{2\pi }}{\omega }} - 50\int_0^{\dfrac{{2\pi }}{\omega }} {\cos 2\omega tdt} } \right)\]
\[ \Rightarrow M = \dfrac{\omega }{{2\pi }}\left( {25\left( {\dfrac{{2\pi }}{\omega }} \right) + 50\left( {\dfrac{{2\pi }}{\omega }} \right) - \int_0^{\dfrac{{2\pi }}{\omega }} {\cos 2\omega tdt} } \right)\]
Since $\cos 2\omega t$ is also sinusoidal, its average over a cycle will also be zero, that is, \[\int_0^{\dfrac{{2\pi }}{\omega }} {\cos 2\omega tdt} = 0\].
\[ \Rightarrow M = \dfrac{\omega }{{2\pi }}\left( {25\left( {\dfrac{{2\pi }}{\omega }} \right) + 50\left( {\dfrac{{2\pi }}{\omega }} \right)} \right)\]
\[ \Rightarrow M = \left( {25 + 50} \right) = 75{{\text{A}}^2}\]
Now, we take the square root of this mean value to get the final RMS value of the resulting current as
$RMS = \sqrt M $
\[ \Rightarrow RMS = \sqrt {75} {\text{A}} = 5\sqrt 3 {\text{A}}\]
Thus the effective value of the resulting current is equal to \[5\sqrt 3 {\text{A}}\].
Hence, the correct answer is option B.
Note: We can integrate the square of the current between any time interval which makes a complete time period. But it will be convenient to set the lower limit of the integral equal to zero. So we chose the period from $0$ to $2\pi $.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Choose the antonym of the word given below Furious class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE