
A converging and a diverging lens of equal focal lengths are placed coaxially in contact. Find the power and focal length of the combination.
Answer
503.4k+ views
Hint: To answer this question, we first need to know the general formula of focal length when two or more than two lenses are placed coaxially $\dfrac{1}{f} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}}$.
Complete answer:
Converging lens - The converging lens is a type of lens that converges rays of light that are parallel to its principal axis.
Diverging lens - The diverging lens is a type of lens that diverges rays of light that are parallel to its principal axis.
When two lenses are placed in contact with each other then the net focal length is given by,
$\dfrac{1}{f} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}}$.
Taking LCM ,
$\dfrac{1}{f} = \dfrac{{{f_1} + {f_2}}}{{{f_1}{f_2}}}$
Therefore $f = \dfrac{{{f_1}{f_2}}}{{{f_1} + {f_2}}}$
As given ${f_1} = - {f_2}$(negative sign is due to the converging and diverging lens)
Therefore ${f_1} + {f_2} = 0$.
So, $f = \dfrac{{ - {f_1}{f_2}}}{0}$.
$f = \infty $ (As (constant/0) is infinity).
And also $P = \dfrac{1}{f}$.
Hence, $P = 0$.
So, the final Power is 0 and the focal length is $\infty $.
Note: When two or more lenses are held in contact, the combined lens's resultant power is equal to the algebraic number of the individual powers. The focal length of a convex lens is positive, while the focal length of a concave lens is negative.
Complete answer:
Converging lens - The converging lens is a type of lens that converges rays of light that are parallel to its principal axis.
Diverging lens - The diverging lens is a type of lens that diverges rays of light that are parallel to its principal axis.
When two lenses are placed in contact with each other then the net focal length is given by,
$\dfrac{1}{f} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}}$.
Taking LCM ,
$\dfrac{1}{f} = \dfrac{{{f_1} + {f_2}}}{{{f_1}{f_2}}}$
Therefore $f = \dfrac{{{f_1}{f_2}}}{{{f_1} + {f_2}}}$
As given ${f_1} = - {f_2}$(negative sign is due to the converging and diverging lens)
Therefore ${f_1} + {f_2} = 0$.
So, $f = \dfrac{{ - {f_1}{f_2}}}{0}$.
$f = \infty $ (As (constant/0) is infinity).
And also $P = \dfrac{1}{f}$.
Hence, $P = 0$.
So, the final Power is 0 and the focal length is $\infty $.
Note: When two or more lenses are held in contact, the combined lens's resultant power is equal to the algebraic number of the individual powers. The focal length of a convex lens is positive, while the focal length of a concave lens is negative.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

