A cell of e.m.f. \[1.5\,V\] and internal resistance \[1.0\Omega \] is connected to two resistors of \[4.0\Omega \] and \[20.0\Omega \] in a series. Draw the circuit diagram and calculate the:
(i) Current in the circuit,
(ii) Potential difference across the \[4.0\Omega \] resistor,
(iii) Voltage drop when the current is flowing,
(iv) Potential difference across the cell.
Last updated date: 24th Mar 2023
•
Total views: 205.8k
•
Views today: 4.84k
Answer
205.8k+ views
Hint:The potential difference in a circuit is given by the Ohm’s law. The potential drop across a resistor is given by the product of the current through the circuit and the resistance
Formula used:
The voltage across a cell of certain e.m.f is given by,
\[V = E - Ir\]
where, \[E\] is the e.m.f of the cell \[I\] is the current through the circuit and \[r\] is the internal resistance of the cell.
The voltage drop across any component of resistance \[R\] is given by,
\[V = IR\]
where \[I\] is the current through the resistor and \[R\] is the value of the resistance.
Complete step by step answer:
Here we have a cell of e.m.f of \[E = 1.5V\] having an internal resistance of \[r = 1\Omega \] is connected with resistance \[4.0\Omega \] and \[20.0\Omega \] in series. So, the circuit diagram is given as follows.
(i) Now, we have to find the net current through the circuit. The voltage drop across a cell is given by,
\[V = E - Ir\]
Now, voltage drop across the cell is the voltage drop across the resistances. So,
\[IR = E - Ir\]
Or, current, \[I = \dfrac{E}{{R + r}}\]
Now, total resistance of the circuit is, \[4 + 20 + 1 = 25\Omega \]
e.m.f of the cell is, \[E = 1.5V\]
So, the current flowing through the circuit is, \[I = \dfrac{{1.5}}{{25}} = 0.06A\]
(ii) So, the potential difference across the \[4.0\Omega \] is equal to,
\[V = 4 \times 0.06 = 0.24\,V\]
So, the potential difference is \[0.24\,V\].
(iii) voltage drop across the cell is \[V = Ir\]
Putting the values we have, \[0.06 \times 1 = 0.06\,V\]
So, voltage drop of the cell when the current is flowing is \[0.06\,V\].
(iv) The potential difference across the cell is the same as the potential differences of the resistances. So, The potential difference across the cell,
\[V = IR\]
\[\Rightarrow 0.06 \times (20 + 4) = 1.44\,V\]
So, the potential difference across the cell is \[1.44\,V\].
Note: The e.m.f of any cell does not depend on any exterior property of the circuit. It purely depends on the composition of the cell. The e.m.f of any practical cell cannot be fully utilized due to the presence of internal resistance of the cell. It decreases the potential drop across the cell.
Formula used:
The voltage across a cell of certain e.m.f is given by,
\[V = E - Ir\]
where, \[E\] is the e.m.f of the cell \[I\] is the current through the circuit and \[r\] is the internal resistance of the cell.
The voltage drop across any component of resistance \[R\] is given by,
\[V = IR\]
where \[I\] is the current through the resistor and \[R\] is the value of the resistance.
Complete step by step answer:
Here we have a cell of e.m.f of \[E = 1.5V\] having an internal resistance of \[r = 1\Omega \] is connected with resistance \[4.0\Omega \] and \[20.0\Omega \] in series. So, the circuit diagram is given as follows.

(i) Now, we have to find the net current through the circuit. The voltage drop across a cell is given by,
\[V = E - Ir\]
Now, voltage drop across the cell is the voltage drop across the resistances. So,
\[IR = E - Ir\]
Or, current, \[I = \dfrac{E}{{R + r}}\]
Now, total resistance of the circuit is, \[4 + 20 + 1 = 25\Omega \]
e.m.f of the cell is, \[E = 1.5V\]
So, the current flowing through the circuit is, \[I = \dfrac{{1.5}}{{25}} = 0.06A\]
(ii) So, the potential difference across the \[4.0\Omega \] is equal to,
\[V = 4 \times 0.06 = 0.24\,V\]
So, the potential difference is \[0.24\,V\].
(iii) voltage drop across the cell is \[V = Ir\]
Putting the values we have, \[0.06 \times 1 = 0.06\,V\]
So, voltage drop of the cell when the current is flowing is \[0.06\,V\].
(iv) The potential difference across the cell is the same as the potential differences of the resistances. So, The potential difference across the cell,
\[V = IR\]
\[\Rightarrow 0.06 \times (20 + 4) = 1.44\,V\]
So, the potential difference across the cell is \[1.44\,V\].
Note: The e.m.f of any cell does not depend on any exterior property of the circuit. It purely depends on the composition of the cell. The e.m.f of any practical cell cannot be fully utilized due to the presence of internal resistance of the cell. It decreases the potential drop across the cell.
Recently Updated Pages
Most eubacterial antibiotics are obtained from A Rhizobium class 12 biology NEET_UG

Salamin bioinsecticides have been extracted from A class 12 biology NEET_UG

Which of the following statements regarding Baculoviruses class 12 biology NEET_UG

Sewage or municipal sewer pipes should not be directly class 12 biology NEET_UG

Sewage purification is performed by A Microbes B Fertilisers class 12 biology NEET_UG

Enzyme immobilisation is Aconversion of an active enzyme class 12 biology NEET_UG

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
