Answer
Verified
475.8k+ views
Hint: Assume that the amounts of both A and B will be equal after t years. Then find out the amount on the given sum of money at respective simple interest rates after t years of time. Then compare both amounts.
Complete step-by-step answer:
Let the amounts of debt of A and B will be equal after $t$ years.
Now, according to the question, A is borrowing Rs. 800 at the rate of 12% per annum.
Principal, $P = 800$ and rate, $r = 12\% $
We know that the amount of a sum on simple interest for $t$ years can be calculated as:
$ \Rightarrow {\text{ Amt}}{\text{. }} = P\left( {1 + \dfrac{{r \times t}}{{100}}} \right)$
Using this formula, A’s amount of debt after $t$ years will be:
$ \Rightarrow {\text{ }}{{\text{A}}_{{\text{amt}}{\text{.}}}} = 800 \times \left( {1 + \dfrac{{12 \times t}}{{100}}} \right) .....(i)$
Similarly, B is borrowing Rs. 910 at the rate of 10% per annum. So in this case, we have:
Principal, $P = 910$ and rate, $r = 10\% $.
Using the same formula, B’s amount of debt after $t$ years will be:
$ \Rightarrow {\text{ }}{{\text{B}}_{{\text{amt}}}} = 910 \times \left( {1 + \dfrac{{10 \times t}}{{100}}} \right) .....(ii)$
As we have discussed earlier, amounts of debt of both A and B will be equal after $t$ years. Therefore we have:
$ \Rightarrow {{\text{A}}_{{\text{amt}}}} = {\text{ }}{{\text{B}}_{{\text{amt}}}}$
Putting values from equation $(i)$ and $(ii)$, we’ll get:
$
\Rightarrow 800 \times \left( {1 + \dfrac{{12 \times t}}{{100}}} \right) = 910 \times \left( {1 + \dfrac{{10 \times t}}{{100}}} \right), \\
\Rightarrow 80 \times \left( {1 + \dfrac{{12t}}{{100}}} \right) = 91 \times \left( {1 + \dfrac{{10t}}{{100}}} \right), \\
\Rightarrow 80 + \dfrac{{96t}}{{10}} = 91 + \dfrac{{91t}}{{10}}, \\
\Rightarrow \dfrac{{96t}}{{10}} - \dfrac{{91t}}{{10}} = 91 - 80, \\
\Rightarrow \dfrac{{5t}}{{10}} = 11, \\
\Rightarrow t = 22 \\
$
Thus the amounts of debt of A and B will be equal after 22 years.
Note: If the sum is kept on compound interest instead of simple interest, then the amount is calculated as:
$ \Rightarrow {\text{ Amt}}{\text{.}} = P{\left( {1 + \dfrac{r}{{100}}} \right)^t}$, where P is the principal sum kept initially, r is the rate of compound interest and t is the time period.
Complete step-by-step answer:
Let the amounts of debt of A and B will be equal after $t$ years.
Now, according to the question, A is borrowing Rs. 800 at the rate of 12% per annum.
Principal, $P = 800$ and rate, $r = 12\% $
We know that the amount of a sum on simple interest for $t$ years can be calculated as:
$ \Rightarrow {\text{ Amt}}{\text{. }} = P\left( {1 + \dfrac{{r \times t}}{{100}}} \right)$
Using this formula, A’s amount of debt after $t$ years will be:
$ \Rightarrow {\text{ }}{{\text{A}}_{{\text{amt}}{\text{.}}}} = 800 \times \left( {1 + \dfrac{{12 \times t}}{{100}}} \right) .....(i)$
Similarly, B is borrowing Rs. 910 at the rate of 10% per annum. So in this case, we have:
Principal, $P = 910$ and rate, $r = 10\% $.
Using the same formula, B’s amount of debt after $t$ years will be:
$ \Rightarrow {\text{ }}{{\text{B}}_{{\text{amt}}}} = 910 \times \left( {1 + \dfrac{{10 \times t}}{{100}}} \right) .....(ii)$
As we have discussed earlier, amounts of debt of both A and B will be equal after $t$ years. Therefore we have:
$ \Rightarrow {{\text{A}}_{{\text{amt}}}} = {\text{ }}{{\text{B}}_{{\text{amt}}}}$
Putting values from equation $(i)$ and $(ii)$, we’ll get:
$
\Rightarrow 800 \times \left( {1 + \dfrac{{12 \times t}}{{100}}} \right) = 910 \times \left( {1 + \dfrac{{10 \times t}}{{100}}} \right), \\
\Rightarrow 80 \times \left( {1 + \dfrac{{12t}}{{100}}} \right) = 91 \times \left( {1 + \dfrac{{10t}}{{100}}} \right), \\
\Rightarrow 80 + \dfrac{{96t}}{{10}} = 91 + \dfrac{{91t}}{{10}}, \\
\Rightarrow \dfrac{{96t}}{{10}} - \dfrac{{91t}}{{10}} = 91 - 80, \\
\Rightarrow \dfrac{{5t}}{{10}} = 11, \\
\Rightarrow t = 22 \\
$
Thus the amounts of debt of A and B will be equal after 22 years.
Note: If the sum is kept on compound interest instead of simple interest, then the amount is calculated as:
$ \Rightarrow {\text{ Amt}}{\text{.}} = P{\left( {1 + \dfrac{r}{{100}}} \right)^t}$, where P is the principal sum kept initially, r is the rate of compound interest and t is the time period.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell