A borrows Rs. 800 at the rate of 12% per annum simple interest and B borrows Rs. 910 at the rate of 10% per annum simple interest. In how many years will their amounts of debt be equal?
Last updated date: 17th Mar 2023
•
Total views: 303.6k
•
Views today: 5.83k
Answer
303.6k+ views
Hint: Assume that the amounts of both A and B will be equal after t years. Then find out the amount on the given sum of money at respective simple interest rates after t years of time. Then compare both amounts.
Complete step-by-step answer:
Let the amounts of debt of A and B will be equal after $t$ years.
Now, according to the question, A is borrowing Rs. 800 at the rate of 12% per annum.
Principal, $P = 800$ and rate, $r = 12\% $
We know that the amount of a sum on simple interest for $t$ years can be calculated as:
$ \Rightarrow {\text{ Amt}}{\text{. }} = P\left( {1 + \dfrac{{r \times t}}{{100}}} \right)$
Using this formula, A’s amount of debt after $t$ years will be:
$ \Rightarrow {\text{ }}{{\text{A}}_{{\text{amt}}{\text{.}}}} = 800 \times \left( {1 + \dfrac{{12 \times t}}{{100}}} \right) .....(i)$
Similarly, B is borrowing Rs. 910 at the rate of 10% per annum. So in this case, we have:
Principal, $P = 910$ and rate, $r = 10\% $.
Using the same formula, B’s amount of debt after $t$ years will be:
$ \Rightarrow {\text{ }}{{\text{B}}_{{\text{amt}}}} = 910 \times \left( {1 + \dfrac{{10 \times t}}{{100}}} \right) .....(ii)$
As we have discussed earlier, amounts of debt of both A and B will be equal after $t$ years. Therefore we have:
$ \Rightarrow {{\text{A}}_{{\text{amt}}}} = {\text{ }}{{\text{B}}_{{\text{amt}}}}$
Putting values from equation $(i)$ and $(ii)$, we’ll get:
$
\Rightarrow 800 \times \left( {1 + \dfrac{{12 \times t}}{{100}}} \right) = 910 \times \left( {1 + \dfrac{{10 \times t}}{{100}}} \right), \\
\Rightarrow 80 \times \left( {1 + \dfrac{{12t}}{{100}}} \right) = 91 \times \left( {1 + \dfrac{{10t}}{{100}}} \right), \\
\Rightarrow 80 + \dfrac{{96t}}{{10}} = 91 + \dfrac{{91t}}{{10}}, \\
\Rightarrow \dfrac{{96t}}{{10}} - \dfrac{{91t}}{{10}} = 91 - 80, \\
\Rightarrow \dfrac{{5t}}{{10}} = 11, \\
\Rightarrow t = 22 \\
$
Thus the amounts of debt of A and B will be equal after 22 years.
Note: If the sum is kept on compound interest instead of simple interest, then the amount is calculated as:
$ \Rightarrow {\text{ Amt}}{\text{.}} = P{\left( {1 + \dfrac{r}{{100}}} \right)^t}$, where P is the principal sum kept initially, r is the rate of compound interest and t is the time period.
Complete step-by-step answer:
Let the amounts of debt of A and B will be equal after $t$ years.
Now, according to the question, A is borrowing Rs. 800 at the rate of 12% per annum.
Principal, $P = 800$ and rate, $r = 12\% $
We know that the amount of a sum on simple interest for $t$ years can be calculated as:
$ \Rightarrow {\text{ Amt}}{\text{. }} = P\left( {1 + \dfrac{{r \times t}}{{100}}} \right)$
Using this formula, A’s amount of debt after $t$ years will be:
$ \Rightarrow {\text{ }}{{\text{A}}_{{\text{amt}}{\text{.}}}} = 800 \times \left( {1 + \dfrac{{12 \times t}}{{100}}} \right) .....(i)$
Similarly, B is borrowing Rs. 910 at the rate of 10% per annum. So in this case, we have:
Principal, $P = 910$ and rate, $r = 10\% $.
Using the same formula, B’s amount of debt after $t$ years will be:
$ \Rightarrow {\text{ }}{{\text{B}}_{{\text{amt}}}} = 910 \times \left( {1 + \dfrac{{10 \times t}}{{100}}} \right) .....(ii)$
As we have discussed earlier, amounts of debt of both A and B will be equal after $t$ years. Therefore we have:
$ \Rightarrow {{\text{A}}_{{\text{amt}}}} = {\text{ }}{{\text{B}}_{{\text{amt}}}}$
Putting values from equation $(i)$ and $(ii)$, we’ll get:
$
\Rightarrow 800 \times \left( {1 + \dfrac{{12 \times t}}{{100}}} \right) = 910 \times \left( {1 + \dfrac{{10 \times t}}{{100}}} \right), \\
\Rightarrow 80 \times \left( {1 + \dfrac{{12t}}{{100}}} \right) = 91 \times \left( {1 + \dfrac{{10t}}{{100}}} \right), \\
\Rightarrow 80 + \dfrac{{96t}}{{10}} = 91 + \dfrac{{91t}}{{10}}, \\
\Rightarrow \dfrac{{96t}}{{10}} - \dfrac{{91t}}{{10}} = 91 - 80, \\
\Rightarrow \dfrac{{5t}}{{10}} = 11, \\
\Rightarrow t = 22 \\
$
Thus the amounts of debt of A and B will be equal after 22 years.
Note: If the sum is kept on compound interest instead of simple interest, then the amount is calculated as:
$ \Rightarrow {\text{ Amt}}{\text{.}} = P{\left( {1 + \dfrac{r}{{100}}} \right)^t}$, where P is the principal sum kept initially, r is the rate of compound interest and t is the time period.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
