
A bar magnet of magnetic moment $M$ is aligned parallel to the direction of uniform magnetic field. What is the work done to align its magnetic moment (i) opposite to the field and ii) normal to the field.
Answer
464.7k+ views
Hint When the magnetic field is parallel to the magnetic dipole moment, the angle between them is zero, and when it is antiparallel, the angle is considered $180^\circ $. The potential energy of an object in a magnetic field is proportional to the magnetic dipole moment, the magnetic field and the angle between them. From here we can calculate the work done as the change in potential energy.
Formula used: In this solution we will be using the following formula;
$\Rightarrow U = - m \cdot B$ where $U$ is the potential energy of an object with a dipole moment of $m$in magnetic field, and $B$ is the magnetic flux density of the magnetic field.
$\Rightarrow W = \Delta U$ where $W$ is the work done and $\Delta U$ is change in potential energy of the system.
Complete step by step answer
An isolated magnet has a magnetic dipole moment due to orbiting of the electrons about the nucleus. Such magnet now placed in a magnetic field, will possess a potential energy given by
$\Rightarrow U = - m \cdot B = - mB\cos \theta $ where $m$ is the magnetic moment of the magnet, $B$ is the magnetic flux density of the magnetic field, and $\theta $ is the angle between the magnetic moment and the magnetic field.
Hence for the magnet in our question, we have
$\Rightarrow U = - MB\cos \theta $ since the magnetic moment and the magnetic field are parallel
Then
$\Rightarrow U = - MB\cos 0^\circ = - MB$
Work done in a field is defined as the change in potential energy
$\Rightarrow W = \Delta U = {U_f} - {U_i}$
Now for work done in aligning its magnetic moment opposite to the field, we have
$\Rightarrow W = - MB\cos 180^\circ - \left( { - MB} \right)$(since opposite the field means anti-parallel thus $\theta = 180^\circ $). Hence,
$\Rightarrow W = MB - \left( { - MB} \right) = MB + MB$
$\therefore W = 2MB$
To align the magnetic moment to become normal to the magnetic field we have that
$\Rightarrow W = - MB\cos 90^\circ - ( - MB)$
Hence, by calculation
$\Rightarrow W = 0 - \left( { - MB} \right)$
$\Rightarrow W = MB$.
Note
This is the ideal work done which only considers the field. In reality, work will be done to overcome reactive forces such as friction or air resistance, which will thus increase the total amount of work done to move the magnet.
Formula used: In this solution we will be using the following formula;
$\Rightarrow U = - m \cdot B$ where $U$ is the potential energy of an object with a dipole moment of $m$in magnetic field, and $B$ is the magnetic flux density of the magnetic field.
$\Rightarrow W = \Delta U$ where $W$ is the work done and $\Delta U$ is change in potential energy of the system.
Complete step by step answer
An isolated magnet has a magnetic dipole moment due to orbiting of the electrons about the nucleus. Such magnet now placed in a magnetic field, will possess a potential energy given by
$\Rightarrow U = - m \cdot B = - mB\cos \theta $ where $m$ is the magnetic moment of the magnet, $B$ is the magnetic flux density of the magnetic field, and $\theta $ is the angle between the magnetic moment and the magnetic field.
Hence for the magnet in our question, we have
$\Rightarrow U = - MB\cos \theta $ since the magnetic moment and the magnetic field are parallel
Then
$\Rightarrow U = - MB\cos 0^\circ = - MB$
Work done in a field is defined as the change in potential energy
$\Rightarrow W = \Delta U = {U_f} - {U_i}$
Now for work done in aligning its magnetic moment opposite to the field, we have
$\Rightarrow W = - MB\cos 180^\circ - \left( { - MB} \right)$(since opposite the field means anti-parallel thus $\theta = 180^\circ $). Hence,
$\Rightarrow W = MB - \left( { - MB} \right) = MB + MB$
$\therefore W = 2MB$
To align the magnetic moment to become normal to the magnetic field we have that
$\Rightarrow W = - MB\cos 90^\circ - ( - MB)$
Hence, by calculation
$\Rightarrow W = 0 - \left( { - MB} \right)$
$\Rightarrow W = MB$.
Note
This is the ideal work done which only considers the field. In reality, work will be done to overcome reactive forces such as friction or air resistance, which will thus increase the total amount of work done to move the magnet.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What is a transformer Explain the principle construction class 12 physics CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

How much time does it take to bleed after eating p class 12 biology CBSE
