Answer

Verified

414k+ views

**Hint:**Probability of event to happen \[P\{ E\} \]

\[ = \dfrac{{Number\,of\,favourable\,outcome}}{{Total\,Number\,of\,outcomes}}\]

In this question we will be creating two different cases as the balls were drawn two times. In the first case the total number of balls in the bag were 6 out of which 3 are red and 3 are green. In the second case the number of balls in the bag are 6 as well out of which 3 are blue.

In the second case we don’t know anything about the colour of the other 3 balls those were drawn out from the bag.

**Complete step-by- step solution:**

Given the data according to the question and its probability cases

Case I:

There are 3 red and 3 green balls in a bag and a person draws 3 balls.

The possibilities are the following:

3 red, 0 green

2 red, 1 green

1 red, 2 green

0 red, 3 green

Case II:

As 3 blue balls have been added to the bag then the possibilities of the balls that are in the bag according to above cases are:

1) If 3 red, 0 green balls were drawn from the bag then there will be 0 red, 3 green and 3 blue balls in the bag.

2) 2 red, 1 green ball were drawn from the bag then there will be 1 red, 2 green and 3 blue balls in the bag.

3) 1 red, 2 green balls were drawn from the bag then there will be 2 red, 1 green and 3 blue balls in the bag.

4) 0 red, 3 green balls were drawn from the bag then there will be 3 red, 0 green and 3 blue balls in the bag.

We need to find the probability of three balls being different colours hence it rules out (a) and (d) cases.

Now, probability of withdrawing 2R, 1G is: \[ = \dfrac{{{}^3{C_1} \times {}^3{C_1}}}{{{}^6{C_3}}}\]

Probability of withdrawing 1R, 1G and 1B ball is: \[\dfrac{{{}^2{C_1} \times {}^1{C_1} \times {}^3{C_1}}}{{{}^6{C_3}}}\]

Hence, the probability of both cases is:

\[ = \dfrac{{{}^3{C_1} \times {}^3{C_1}}}{{{}^6{C_3}}} \times \dfrac{{{}^2{C_1} \times {}^1{C_1} \times {}^3{C_1}}}{{{}^6{C_3}}}\]

\[ = \dfrac{{\dfrac{{3!}}{{2!1!}} \times \dfrac{{3!}}{{2!1!}}}}{{\dfrac{{6!}}{{3!3!}}}} \times \dfrac{{\dfrac{{2!}}{{1!1!}} \times 1 \times \dfrac{{3!}}{{2!1!}}}}{{\dfrac{{6!}}{{3!3!}}}}\]

\[ = \dfrac{{\dfrac{{3 \times \not 2!}}{{\not 2!}} \times \dfrac{{3 \times \not 2!}}{{\not 2!}}}}{{\dfrac{{\not 6 \times 5 \times 4 \times \not 3!}}{{3! \times 3\not ! \times \not 2 \times 1}}}} \times \dfrac{{2! \times \dfrac{{3 \times 2!}}{{\not 2!}}}}{{\dfrac{{\not 6 \times 5 \times 4 \times \not 3!}}{{\not 3! \times 3! \times 2 \times 1}}}}\]

\[ = \dfrac{9}{{20}} \times \dfrac{6}{{20}} = \dfrac{{27}}{{200}}\,\,\,\,\,\,\,.......(1)\]

Now case II as the number of balls are same just colours are different, we have:

\[ = \dfrac{{{}^3{C_2} \times {}^3{C_1}}}{{{}^6{C_3}}} \times \dfrac{{{}^1{C_1} \times {}^2{C_1} \times {}^3{C_1}}}{{{}^6{C_3}}}\]

\[ = \dfrac{{\dfrac{{3!}}{{2!1!}} \times \dfrac{{3!}}{{2!1!}}}}{{\dfrac{{6!}}{{3!3!}}}} \times \dfrac{{\dfrac{{2!}}{{1!1!}} \times 1 \times \dfrac{{3!}}{{2!1!}}}}{{\dfrac{{6!}}{{3!3!}}}}\]

\[ = \dfrac{{\dfrac{{3 \times \not 2!}}{{\not 2!}} \times \dfrac{{3 \times \not 2!}}{{\not 2!}}}}{{\dfrac{{\not 6 \times 5 \times 4 \times \not 3!}}{{3! \times 3\not ! \times \not 2 \times 1}}}} \times \dfrac{{2! \times \dfrac{{3 \times 2!}}{{\not 2!}}}}{{\dfrac{{\not 6 \times 5 \times 4 \times \not 3!}}{{\not 3! \times 3! \times 2 \times 1}}}}\]

\[ = \dfrac{9}{{20}} \times \dfrac{6}{{20}} = \dfrac{{27}}{{200}}\,\,\,\,\,\,\,.......(2)\]

\[ = \dfrac{{27}}{{200}}.....(2)\]

Probability of 3 later balls being all of different colours \[ = \dfrac{{27}}{{200}} + \dfrac{{27}}{{200}}\](from \[e{q^n}\] 1 & 2)

\[ = \dfrac{{2 \times 27}}{{200}}\]\[ = \dfrac{{27}}{{100}}\]

**Note:**Cube root need to group digit in no. 3 and taking the unit place digit of the first group & ten’s from \[I{I^{nd}}\].

In mathematics, a cube root of a number x is a number y such that \[\;{y^3}\; = \;x\]. All nonzero real numbers have exactly one real cube root and a pair of complex conjugate cube roots, and all nonzero complex numbers have three distinct complex cube roots. For example, the real cube root of 8, denoted \[\sqrt[3]{8}\], is 2, because \[{2^3}\; = \;8\]

Recently Updated Pages

What number is 20 of 400 class 8 maths CBSE

Which one of the following numbers is completely divisible class 8 maths CBSE

What number is 78 of 50 A 32 B 35 C 36 D 39 E 41 class 8 maths CBSE

How many integers are there between 10 and 2 and how class 8 maths CBSE

The 3 is what percent of 12 class 8 maths CBSE

Find the circumference of the circle having radius class 8 maths CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

List some examples of Rabi and Kharif crops class 8 biology CBSE

Which are the Top 10 Largest Countries of the World?

The provincial president of the constituent assembly class 11 social science CBSE

Write the 6 fundamental rights of India and explain in detail