
A 100-watt bulb working on 200 volts and a 200-watt bulb working on 100 volts have:-
A. Resistances in the ratio of 4:1
B. Maximum current ratings in the ratio of 1:4
C. Resistances in the ratio of 2:1
D. Maximum current ratings in the ratio of 1:2
Answer
559.8k+ views
Hint: We will compute the values of the resistance and the current of both the bulbs, as, in the options, the ratios of the resistance and the current values of both the bulbs is given. Then, we will divide these values to find their ratios. Thus, we will obtain the ratio of the values of the resistance and the current.
Formulae used:
\[\begin{align}
& R=\dfrac{{{V}^{2}}}{P} \\
& I=\dfrac{P}{V} \\
\end{align}\]
Complete step-by-step solution
The formula that relates the power, the voltage, and the resistance of the bulb is given as follows.
\[R=\dfrac{{{V}^{2}}}{P}\]
Where R is the resistance, V is the voltage and P is the power.
The formula that relates the power, the voltage, and the resistance of the bulb is given as follows.
\[I=\dfrac{P}{V}\]
Where I is the current, V is the voltage and P is the power.
Firstly, we will compute the resistance values of both the bulbs.
From the data, we have the data as follows.
The power of bulb 1 is 100 watt.
The voltage using which the bulb glows is 200 volt.
Bulb 1: The resistance value of the first bulb is,
\[\begin{align}
& R=\dfrac{{{V}^{2}}}{P} \\
&\Rightarrow {{R}_{1}}=\dfrac{{{200}^{2}}}{100} \\
&\Rightarrow {{R}_{1}}=400\Omega \\
\end{align}\]
From the data, we have the data as follows.
The power of bulb 2 is 200 watt.
The voltage using which the bulb glows is 100 volt.
Bulb 2: The resistance value of the second bulb is,
\[\begin{align}
& R=\dfrac{{{V}^{2}}}{P} \\
&\Rightarrow {{R}_{2}}=\dfrac{{{100}^{2}}}{200} \\
&\Rightarrow {{R}_{2}}=50\Omega \\
\end{align}\]
The ratio of the resistance values of the bulbs is calculated as follows.
\[\begin{align}
& \dfrac{{{R}_{1}}}{{{R}_{2}}}=\dfrac{400}{50} \\
&\Rightarrow \dfrac{{{R}_{1}}}{{{R}_{2}}}=\dfrac{8}{1} \\
\end{align}\]
Therefore, the ratio of the resistance values of the bulbs is 8:1.
Now, we will compute the current values of both the bulbs.
From the data, we have the data as follows.
The power of bulb 1 is 100 watt.
The voltage using which the bulb glows is 200 volt.
Bulb 1: The current value of the first bulb is,
\[\begin{align}
& I=\dfrac{P}{V} \\
& {{I}_{1}}=\dfrac{100}{200} \\
&\Rightarrow {{I}_{1}}=\dfrac{1}{2}A \\
\end{align}\]
From the data, we have the data as follows.
The power of bulb 2 is 200 watt.
The voltage using which the bulb glows is 100 volt.
Bulb 2: The current value of the second bulb is,
\[\begin{align}
& I=\dfrac{P}{V} \\
&\Rightarrow {{I}_{2}}=\dfrac{200}{100} \\
&\Rightarrow {{I}_{2}}=\dfrac{2}{1}A \\
\end{align}\]
The ratio of the current values of the bulbs is calculated as follows.
\[\begin{align}
& \dfrac{{{I}_{1}}}{{{I}_{2}}}=\dfrac{1}{2}\times \dfrac{1}{2} \\
&\Rightarrow \dfrac{{{I}_{1}}}{{{I}_{2}}}=\dfrac{1}{4} \\
\end{align}\]
Therefore, the ratio of the current values of the bulbs is 1:4.
\[ \therefore \]The maximum current ratings in the ratio of 1:4.
As, the maximum current ratings in the ratio of 1:4, thus, option (B) is correct.
Note: The things to be on your finger-tips for further information on solving these types of problems are: The units of the physical parameters should be known. Even the formula for computing the values of the power, current, voltage, and resistance should be known.
Formulae used:
\[\begin{align}
& R=\dfrac{{{V}^{2}}}{P} \\
& I=\dfrac{P}{V} \\
\end{align}\]
Complete step-by-step solution
The formula that relates the power, the voltage, and the resistance of the bulb is given as follows.
\[R=\dfrac{{{V}^{2}}}{P}\]
Where R is the resistance, V is the voltage and P is the power.
The formula that relates the power, the voltage, and the resistance of the bulb is given as follows.
\[I=\dfrac{P}{V}\]
Where I is the current, V is the voltage and P is the power.
Firstly, we will compute the resistance values of both the bulbs.
From the data, we have the data as follows.
The power of bulb 1 is 100 watt.
The voltage using which the bulb glows is 200 volt.
Bulb 1: The resistance value of the first bulb is,
\[\begin{align}
& R=\dfrac{{{V}^{2}}}{P} \\
&\Rightarrow {{R}_{1}}=\dfrac{{{200}^{2}}}{100} \\
&\Rightarrow {{R}_{1}}=400\Omega \\
\end{align}\]
From the data, we have the data as follows.
The power of bulb 2 is 200 watt.
The voltage using which the bulb glows is 100 volt.
Bulb 2: The resistance value of the second bulb is,
\[\begin{align}
& R=\dfrac{{{V}^{2}}}{P} \\
&\Rightarrow {{R}_{2}}=\dfrac{{{100}^{2}}}{200} \\
&\Rightarrow {{R}_{2}}=50\Omega \\
\end{align}\]
The ratio of the resistance values of the bulbs is calculated as follows.
\[\begin{align}
& \dfrac{{{R}_{1}}}{{{R}_{2}}}=\dfrac{400}{50} \\
&\Rightarrow \dfrac{{{R}_{1}}}{{{R}_{2}}}=\dfrac{8}{1} \\
\end{align}\]
Therefore, the ratio of the resistance values of the bulbs is 8:1.
Now, we will compute the current values of both the bulbs.
From the data, we have the data as follows.
The power of bulb 1 is 100 watt.
The voltage using which the bulb glows is 200 volt.
Bulb 1: The current value of the first bulb is,
\[\begin{align}
& I=\dfrac{P}{V} \\
& {{I}_{1}}=\dfrac{100}{200} \\
&\Rightarrow {{I}_{1}}=\dfrac{1}{2}A \\
\end{align}\]
From the data, we have the data as follows.
The power of bulb 2 is 200 watt.
The voltage using which the bulb glows is 100 volt.
Bulb 2: The current value of the second bulb is,
\[\begin{align}
& I=\dfrac{P}{V} \\
&\Rightarrow {{I}_{2}}=\dfrac{200}{100} \\
&\Rightarrow {{I}_{2}}=\dfrac{2}{1}A \\
\end{align}\]
The ratio of the current values of the bulbs is calculated as follows.
\[\begin{align}
& \dfrac{{{I}_{1}}}{{{I}_{2}}}=\dfrac{1}{2}\times \dfrac{1}{2} \\
&\Rightarrow \dfrac{{{I}_{1}}}{{{I}_{2}}}=\dfrac{1}{4} \\
\end{align}\]
Therefore, the ratio of the current values of the bulbs is 1:4.
\[ \therefore \]The maximum current ratings in the ratio of 1:4.
As, the maximum current ratings in the ratio of 1:4, thus, option (B) is correct.
Note: The things to be on your finger-tips for further information on solving these types of problems are: The units of the physical parameters should be known. Even the formula for computing the values of the power, current, voltage, and resistance should be known.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

