25 ml of an aqueous solution of KCl was found to require 20 ml of 1 M $AgN{O_3}$ solution when treated using a ${K_2}Cr{O_4}$ as indicator. Depression in freezing point of KCl solution with 100% ionisation will be :
[${K_F} = {2.0^0}mo{l^{ - 1}} kg$, molarity = molality]
a.) ${3.2^0}$
b.) ${1.6^0}$
c.) ${0.8^0}$
d.) ${5.0^0}$
Answer
Verified
476.1k+ views
Hint: Depression in freezing point is defined as the decrease in value of freezing point of a solvent when an impurity or non volatile solvent is added to it.
It can be calculated by the formula as-
$\Delta {T_f}$ = molality × ${K_f}$ × i
Where $\Delta {T_f}$ is the depression in freezing point
${K_f}$ is the molal depression constant
And I is the van't hoff factor
Formula used:
Complete step by step answer:
In the question, we have been given that 25 ml of KCl react with 20 ml of 1 M $AgN{O_3}$ solution.
Thus, volume of KCl = 25 ml
Molarity of KCl = M
Volume of $AgN{O_3}$ solution = 1 M
Molarity of $AgN{O_3}$ solution = 1 M
When the reaction occurred; we know that during neutralization
${M_1}{V_1} = {M_2}{V_2}$
Where ${M_1}$ is the molarity of KCl solution
${M_2}$ is the molarity of $AgN{O_3}$ solution
${V_1}$ is the volume of KCl solution
And ${V_2}$ is the volume of $AgN{O_3}$ solution
Thus, by putting the values, we can find molarity
${M_1}$× 25 = 1 × 20
Therefore, ${M_1} = \dfrac{{1×20}}{{25}}$
${M_1}$ = 0.8 M
Further, we are given that molarity is equal to molality.
Thus, molality = molarity = 0.8 molal
We have the formula for finding the depression in freezing point as-
$\Delta {T_f}$ = molality × ${K_f}$ × i
We will first find value if I which is Von’t hoff factor.
i = (1+α)
As the dissociation is 100%. So, the value of α will be 1.
Thus, i = (1+1)
i = 2
So, now we have all the variables and we can find out the value of depression in freezing point as-
$\Delta {T_f}$ = molality × ${K_f}$ × i
$\Delta {T_f}$ = 0.8 M × 2.0 × 2
$\Delta {T_f}$ = ${3.2^0}$
Thus, option a.) is the correct answer.
Note: The value of α depends upon the dissociation of the ions in the solution. If the dissociation is complete i.e. 100% then the value is 1. If the dissociation is less then value is also less.
The depression in freezing point is a colligative property and depends upon the number of particles present.
It can be calculated by the formula as-
$\Delta {T_f}$ = molality × ${K_f}$ × i
Where $\Delta {T_f}$ is the depression in freezing point
${K_f}$ is the molal depression constant
And I is the van't hoff factor
Formula used:
Complete step by step answer:
In the question, we have been given that 25 ml of KCl react with 20 ml of 1 M $AgN{O_3}$ solution.
Thus, volume of KCl = 25 ml
Molarity of KCl = M
Volume of $AgN{O_3}$ solution = 1 M
Molarity of $AgN{O_3}$ solution = 1 M
When the reaction occurred; we know that during neutralization
${M_1}{V_1} = {M_2}{V_2}$
Where ${M_1}$ is the molarity of KCl solution
${M_2}$ is the molarity of $AgN{O_3}$ solution
${V_1}$ is the volume of KCl solution
And ${V_2}$ is the volume of $AgN{O_3}$ solution
Thus, by putting the values, we can find molarity
${M_1}$× 25 = 1 × 20
Therefore, ${M_1} = \dfrac{{1×20}}{{25}}$
${M_1}$ = 0.8 M
Further, we are given that molarity is equal to molality.
Thus, molality = molarity = 0.8 molal
We have the formula for finding the depression in freezing point as-
$\Delta {T_f}$ = molality × ${K_f}$ × i
We will first find value if I which is Von’t hoff factor.
i = (1+α)
As the dissociation is 100%. So, the value of α will be 1.
Thus, i = (1+1)
i = 2
So, now we have all the variables and we can find out the value of depression in freezing point as-
$\Delta {T_f}$ = molality × ${K_f}$ × i
$\Delta {T_f}$ = 0.8 M × 2.0 × 2
$\Delta {T_f}$ = ${3.2^0}$
Thus, option a.) is the correct answer.
Note: The value of α depends upon the dissociation of the ions in the solution. If the dissociation is complete i.e. 100% then the value is 1. If the dissociation is less then value is also less.
The depression in freezing point is a colligative property and depends upon the number of particles present.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Trending doubts
What are the major means of transport Explain each class 12 social science CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
Explain sex determination in humans with the help of class 12 biology CBSE
Explain with a neat labelled diagram the TS of mammalian class 12 biology CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE
Explain Mendels Monohybrid Cross Give an example class 12 biology CBSE