
$[\overrightarrow{a}=3\overrightarrow{i}-\overrightarrow{j}+2\overrightarrow{k}]$, $[\overrightarrow{b}=2\overrightarrow{i}+\overrightarrow{j}-\overrightarrow{k}]$, then $[\overrightarrow{a}\times (\overrightarrow{a}\cdot \overrightarrow{b})=]$
A. $[3\overrightarrow{a}]$
B. $[3\sqrt{14}]$
C. $0$
D. None of these
Answer
232.8k+ views
Hint: In this question, the dot and cross products of vectors are applied to find the required vector expression. The dot product is said to be a scalar product and the cross product is said to be a skew product or vector product. By using appropriate formulae, the required vector product is calculated.
Formula Used:
The dot product of two vectors is
$\overrightarrow{a}\cdot \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos (\overrightarrow{a},\overrightarrow{b})$
The cross-product of two vectors is
$\overrightarrow{a}\times \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\sin (\overrightarrow{a},\overrightarrow{b})\overrightarrow{n}$
Scalar triple product of three vectors:
We have the vectors $[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}]$ as
$[\begin{align}
& \overrightarrow{a}={{a}_{1}}\overrightarrow{i}-{{a}_{2}}\overrightarrow{j}+{{a}_{3}}\overrightarrow{k} \\
& \overrightarrow{b}={{b}_{1}}\overrightarrow{i}+{{b}_{2}}\overrightarrow{j}-{{b}_{3}}\overrightarrow{k} \\
& \overrightarrow{c}={{c}_{1}}\overrightarrow{i}+{{c}_{2}}\overrightarrow{j}-{{c}_{3}}\overrightarrow{k} \\
\end{align}]$
Then, the triple product is calculated by,
$[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|]$
In vector triple product is cross and dot products are interchangeable. I.e.,
$[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\overrightarrow{a}\cdot \overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{a}\times \overrightarrow{b}\cdot \overrightarrow{c}=\overrightarrow{b}\times \overrightarrow{c}\cdot \overrightarrow{a}=\overrightarrow{c}\times \overrightarrow{a}\cdot \overrightarrow{b} \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]=[\overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}] \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=-[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{c}]=-[\overrightarrow{c}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=-[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{b}] \\
\end{align}]$
Important vector identities for solving vector equations are:
$[\overrightarrow{a}\times \overrightarrow{a}=0]$
$[\overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{a}]=0]$
$[\begin{align}
& \overrightarrow{i}\cdot \overrightarrow{i}=\overrightarrow{j}\cdot \overrightarrow{j}=\overrightarrow{k}\cdot \overrightarrow{k}=1 \\
& \overrightarrow{i}\times \overrightarrow{j}=\overrightarrow{k} \\
& \overrightarrow{j}\times \overrightarrow{k}=\overrightarrow{i} \\
& \overrightarrow{k}\times \overrightarrow{i}=\overrightarrow{j} \\
\end{align}]$
Complete step by step solution: It is given that,
$[\begin{align}
& \overrightarrow{a}=3\overrightarrow{i}-\overrightarrow{j}+2\overrightarrow{k} \\
& \overrightarrow{b}=2\overrightarrow{i}+\overrightarrow{j}-\overrightarrow{k} \\
\end{align}]$
Then,
$[\overrightarrow{a}\times (\overrightarrow{a}\cdot \overrightarrow{b})=[\overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]]$
$\begin{align}
& \Rightarrow [\overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]=\left| \begin{matrix}
3 & -1 & 2 \\
3 & -1 & 2 \\
2 & 1 & -1 \\
\end{matrix} \right| \\
& \text{ }=3(1-2)+1(-3-4)+2(3+2) \\
& \text{ }=3(-1)-7+2(5) \\
& \text{ }=-3-7+10 \\
& \text{ }=0 \\
\end{align}$
Thus, Option (C) is correct.
Note: Here we may go wrong with the vector identities and scalar triple product. Here are the simple formulae used for solving the given vector. By applying appropriate vector products, the given vector equation is evaluated
Formula Used:
The dot product of two vectors is
$\overrightarrow{a}\cdot \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos (\overrightarrow{a},\overrightarrow{b})$
The cross-product of two vectors is
$\overrightarrow{a}\times \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\sin (\overrightarrow{a},\overrightarrow{b})\overrightarrow{n}$
Scalar triple product of three vectors:
We have the vectors $[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}]$ as
$[\begin{align}
& \overrightarrow{a}={{a}_{1}}\overrightarrow{i}-{{a}_{2}}\overrightarrow{j}+{{a}_{3}}\overrightarrow{k} \\
& \overrightarrow{b}={{b}_{1}}\overrightarrow{i}+{{b}_{2}}\overrightarrow{j}-{{b}_{3}}\overrightarrow{k} \\
& \overrightarrow{c}={{c}_{1}}\overrightarrow{i}+{{c}_{2}}\overrightarrow{j}-{{c}_{3}}\overrightarrow{k} \\
\end{align}]$
Then, the triple product is calculated by,
$[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|]$
In vector triple product is cross and dot products are interchangeable. I.e.,
$[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\overrightarrow{a}\cdot \overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{a}\times \overrightarrow{b}\cdot \overrightarrow{c}=\overrightarrow{b}\times \overrightarrow{c}\cdot \overrightarrow{a}=\overrightarrow{c}\times \overrightarrow{a}\cdot \overrightarrow{b} \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]=[\overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}] \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=-[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{c}]=-[\overrightarrow{c}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=-[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{b}] \\
\end{align}]$
Important vector identities for solving vector equations are:
$[\overrightarrow{a}\times \overrightarrow{a}=0]$
$[\overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{a}]=0]$
$[\begin{align}
& \overrightarrow{i}\cdot \overrightarrow{i}=\overrightarrow{j}\cdot \overrightarrow{j}=\overrightarrow{k}\cdot \overrightarrow{k}=1 \\
& \overrightarrow{i}\times \overrightarrow{j}=\overrightarrow{k} \\
& \overrightarrow{j}\times \overrightarrow{k}=\overrightarrow{i} \\
& \overrightarrow{k}\times \overrightarrow{i}=\overrightarrow{j} \\
\end{align}]$
Complete step by step solution: It is given that,
$[\begin{align}
& \overrightarrow{a}=3\overrightarrow{i}-\overrightarrow{j}+2\overrightarrow{k} \\
& \overrightarrow{b}=2\overrightarrow{i}+\overrightarrow{j}-\overrightarrow{k} \\
\end{align}]$
Then,
$[\overrightarrow{a}\times (\overrightarrow{a}\cdot \overrightarrow{b})=[\overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]]$
$\begin{align}
& \Rightarrow [\overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]=\left| \begin{matrix}
3 & -1 & 2 \\
3 & -1 & 2 \\
2 & 1 & -1 \\
\end{matrix} \right| \\
& \text{ }=3(1-2)+1(-3-4)+2(3+2) \\
& \text{ }=3(-1)-7+2(5) \\
& \text{ }=-3-7+10 \\
& \text{ }=0 \\
\end{align}$
Thus, Option (C) is correct.
Note: Here we may go wrong with the vector identities and scalar triple product. Here are the simple formulae used for solving the given vector. By applying appropriate vector products, the given vector equation is evaluated
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

