
Write the value of $\tan \left( 2{{\tan }^{-1}}\dfrac{1}{5} \right)$.
Answer
154.2k+ views
Hint: We will find the value of the given function using multiple angle formula for tangent function. We have to start solving by applying the double angle formula of the tangent, $2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)$ and then the trigonometric identity $\tan ({{\tan }^{-1}}x)=x$ can be used to get the final answer.
Complete step-by-step solution:
We have to find the value of $\tan \left( 2{{\tan }^{-1}}\dfrac{1}{5} \right)$.
We will go step by step.
For that, first we have to find the value of $\left( 2{{\tan }^{-1}}\dfrac{1}{5} \right)$.
For finding value we will use trigonometric multiple angle formula. The trigonometric functions of the multiple angles are multiple angle formulas.
Sine, cosine, and tangent are general functions for the multiple angle formula.
Double and triple angle formula is under the trigonometric multiple angle formula.
So, here we will apply the trigonometric multiple angle formula for the tangent.
One of trigonometric multiple angle formula for tangent, i.e the double angle formula is stated as,
$2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)$
Here, we have $x=\dfrac{1}{5}$ . So, we will substitute for x, we will get
$2{{\tan }^{-1}}\dfrac{1}{5}={{\tan }^{-1}}\left( \dfrac{2\left( \dfrac{1}{5} \right)}{1-{{\left( \dfrac{1}{5} \right)}^{2}}} \right)$
Now, simplifying further, we get
\[\begin{align}
& \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{5}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{5}}{1-\dfrac{1}{25}} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{5}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{5}}{\dfrac{25-1}{25}} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{5}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{5}}{\dfrac{24}{25}} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{5}={{\tan }^{-1}}\left( \dfrac{2}{5}\times \dfrac{25}{24} \right) \\
& \therefore 2{{\tan }^{-1}}\dfrac{1}{5}={{\tan }^{-1}}\left( \dfrac{5}{12} \right) \\
\end{align}\]
So, now we have computed the value of $2{{\tan }^{-1}}\dfrac{1}{5}$.
Now we will substitute it in give expression, we get,
\[\begin{align}
& \tan \left( 2{{\tan }^{-1}}\dfrac{1}{5} \right)=\tan \left( {{\tan }^{-1}}\left( \dfrac{5}{12} \right) \right) \\
& \\
\end{align}\]
Now we have to recall trigonometric identity here.
Here, tan and arc tan are opposite operations. So, they cancel each other out.
That means $\tan ({{\tan }^{-1}}x)=x$
So, we will have \[\begin{align}
& \tan \left( {{\tan }^{-1}}\left( \dfrac{5}{12} \right) \right)=\dfrac{5}{12} \\
& \\
\end{align}\]
We get the required answer as \[\dfrac{5}{12}\].
Note: Double and triple angle formula is under multiple angle formula. Here we are using double angle formula for the tangent. Do not find it directly using the calculator you have to remember trigonometric identities for this type of questions. Here students must not convert the tan function in terms of sine and cosine functions as we already have a formula for $2{{\tan }^{-1}}x$. If students convert in terms of sine and cosine, it might get complicated and require the usage of many formulas and identities.
Complete step-by-step solution:
We have to find the value of $\tan \left( 2{{\tan }^{-1}}\dfrac{1}{5} \right)$.
We will go step by step.
For that, first we have to find the value of $\left( 2{{\tan }^{-1}}\dfrac{1}{5} \right)$.
For finding value we will use trigonometric multiple angle formula. The trigonometric functions of the multiple angles are multiple angle formulas.
Sine, cosine, and tangent are general functions for the multiple angle formula.
Double and triple angle formula is under the trigonometric multiple angle formula.
So, here we will apply the trigonometric multiple angle formula for the tangent.
One of trigonometric multiple angle formula for tangent, i.e the double angle formula is stated as,
$2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)$
Here, we have $x=\dfrac{1}{5}$ . So, we will substitute for x, we will get
$2{{\tan }^{-1}}\dfrac{1}{5}={{\tan }^{-1}}\left( \dfrac{2\left( \dfrac{1}{5} \right)}{1-{{\left( \dfrac{1}{5} \right)}^{2}}} \right)$
Now, simplifying further, we get
\[\begin{align}
& \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{5}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{5}}{1-\dfrac{1}{25}} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{5}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{5}}{\dfrac{25-1}{25}} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{5}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{5}}{\dfrac{24}{25}} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{5}={{\tan }^{-1}}\left( \dfrac{2}{5}\times \dfrac{25}{24} \right) \\
& \therefore 2{{\tan }^{-1}}\dfrac{1}{5}={{\tan }^{-1}}\left( \dfrac{5}{12} \right) \\
\end{align}\]
So, now we have computed the value of $2{{\tan }^{-1}}\dfrac{1}{5}$.
Now we will substitute it in give expression, we get,
\[\begin{align}
& \tan \left( 2{{\tan }^{-1}}\dfrac{1}{5} \right)=\tan \left( {{\tan }^{-1}}\left( \dfrac{5}{12} \right) \right) \\
& \\
\end{align}\]
Now we have to recall trigonometric identity here.
Here, tan and arc tan are opposite operations. So, they cancel each other out.
That means $\tan ({{\tan }^{-1}}x)=x$
So, we will have \[\begin{align}
& \tan \left( {{\tan }^{-1}}\left( \dfrac{5}{12} \right) \right)=\dfrac{5}{12} \\
& \\
\end{align}\]
We get the required answer as \[\dfrac{5}{12}\].
Note: Double and triple angle formula is under multiple angle formula. Here we are using double angle formula for the tangent. Do not find it directly using the calculator you have to remember trigonometric identities for this type of questions. Here students must not convert the tan function in terms of sine and cosine functions as we already have a formula for $2{{\tan }^{-1}}x$. If students convert in terms of sine and cosine, it might get complicated and require the usage of many formulas and identities.
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Electrical Field of Charged Spherical Shell - JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Ideal and Non-Ideal Solutions Raoult's Law - JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
