
$3$ mole of gas ''$X$" and 2 moles of gas "$Y$" enters from the end "$P$" and "$Q$" of the cylinder respectively. The cylinder has the area of cross section, shown as under
the length of the cylinder is $150cm$. The gas "$x$" intermixes with gas "$y$" at this point. If the molecular weight of the gases $x$ and $y$ is $20$ and $80$ respectively, then what will be the distance of point $A$ from $Q$?
(A) $75cm$
(B) $50cm$
(C) $37.5cm$
(D) $90cm$
Answer
205.8k+ views
Hint: Molecular weight is an amount of the sum of the atomic weight values of the atoms in a molecule. Molecular weight is used in chemistry to define stoichiometry in chemical reactions and equations. Molecular weight is normally abbreviated by $M.W$ or $MW$. Molecular weight is either unit less or expressed in terms of atomic mass units (amu) or Daltons ($Da$).
Formula Used:
$\dfrac{{rx}}{{ry}} = \dfrac{{{w_x}}}{{{n_y}}}\sqrt {\dfrac{{{M_y}}}{{{M_x}}}} $
Complete Step by step solution:
So we know the equation
$\dfrac{{rx}}{{ry}} = \dfrac{{{w_x}}}{{{n_y}}}\sqrt {\dfrac{{{M_y}}}{{{M_x}}}} $
Here, ${M_x}$ and ${M_y}$ represent the molecular weight of the gasses $X$ and $Y$.
Now substituting the values in the above equation
$\dfrac{{rx}}{{ry}} = \dfrac{3}{2}\sqrt {\dfrac{{80}}{{20}}} = \dfrac{3}{1} = 3:1$
So distance travelled by the gas $X$ is $3$ and distance travelled by the gas $Y$ is $1$.
Hence it can be written as
$\dfrac{{dis\tan ce{\text{ }}travelled{\text{ }}by{\text{ }}gas{\text{ }}X}}{{dis\tan ce{\text{ }}travelled{\text{ }}by{\text{ }}gas{\text{ }}Y}} = 3:1$
So now we can calculate the distance of $A$ from $Q$.
$\therefore $ Distance of $A$ from $Q = \dfrac{{150}}{3} = 50cm$
Hence option B is correct
Additional Information
The molecular weight of a molecule or polymer is related to its properties. As the molecular weight increases their mechanical properties also increase. Every molecule has ideal weight and the different properties are optimized. The number of average molecular weights is stated as the total weight of a molecule divided by the total number of molecules.
Note:
The mole is the unit of measurement for the amount of substance in the International System of Units. A mole of a substance or a mole of particles is well-defined as exactly particles, which may be atoms, molecules, ions, or electrons. In short, for particles, $1mol = 6.02214076 \times {10^{23}}.$ Remember to find distance travelled by particle or molecule we will divide the length by number of particles or molecules given.
Formula Used:
$\dfrac{{rx}}{{ry}} = \dfrac{{{w_x}}}{{{n_y}}}\sqrt {\dfrac{{{M_y}}}{{{M_x}}}} $
Complete Step by step solution:
So we know the equation
$\dfrac{{rx}}{{ry}} = \dfrac{{{w_x}}}{{{n_y}}}\sqrt {\dfrac{{{M_y}}}{{{M_x}}}} $
Here, ${M_x}$ and ${M_y}$ represent the molecular weight of the gasses $X$ and $Y$.
Now substituting the values in the above equation
$\dfrac{{rx}}{{ry}} = \dfrac{3}{2}\sqrt {\dfrac{{80}}{{20}}} = \dfrac{3}{1} = 3:1$
So distance travelled by the gas $X$ is $3$ and distance travelled by the gas $Y$ is $1$.
Hence it can be written as
$\dfrac{{dis\tan ce{\text{ }}travelled{\text{ }}by{\text{ }}gas{\text{ }}X}}{{dis\tan ce{\text{ }}travelled{\text{ }}by{\text{ }}gas{\text{ }}Y}} = 3:1$
So now we can calculate the distance of $A$ from $Q$.
$\therefore $ Distance of $A$ from $Q = \dfrac{{150}}{3} = 50cm$
Hence option B is correct
Additional Information
The molecular weight of a molecule or polymer is related to its properties. As the molecular weight increases their mechanical properties also increase. Every molecule has ideal weight and the different properties are optimized. The number of average molecular weights is stated as the total weight of a molecule divided by the total number of molecules.
Note:
The mole is the unit of measurement for the amount of substance in the International System of Units. A mole of a substance or a mole of particles is well-defined as exactly particles, which may be atoms, molecules, ions, or electrons. In short, for particles, $1mol = 6.02214076 \times {10^{23}}.$ Remember to find distance travelled by particle or molecule we will divide the length by number of particles or molecules given.
Recently Updated Pages
JEE Mains Correction Window 2026- Session 1 and 2 Dates, Form Edit Link, Fee

JEE Main 2026 Marking Scheme- Marks Distribution, Negative and Total Marks

Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Trending doubts
Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Geostationary and Geosynchronous Satellites Explained

Charging and Discharging of Capacitor Explained

JEE Main 2025 Exam Pattern (Revised)

Photoelectric Effect and Stopping Potential: Concept, Formula & Exam Guide

JEE Main 2026 Session 1 Application Form Opening Soon – Important Dates & Details

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 10 Thermal Properties of Matter - 2025-26

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

