
A motorcyclist of mass $m$ is to negotiate a curve of radius $r$ with a speed $v$. The minimum value of the coefficient of friction so that this negotiation may take place safely is?
A. ${v^2}rg$
B. $\dfrac{{{v^2}}}{{gr}}$
C. $\dfrac{{gr}}{{{v^2}}}$
D. $\dfrac{g}{{{v^2}r}}$
Answer
131.7k+ views
Hint: Since there is a downward force (which equals the weight of the body) applied to a body. When a body takes a curve with radius $r$ there is a chance of slipping a body hence, to negotiate the slip the normal force acting opposite to the downward force must be balanced by the centrifugal force.
Complete answer:
Mass of a motorcyclist $ = m$ (given)
Since the gravity $g$ acts downward. Therefore, the weight of a body $ = mg$
Let us consider the normal force $N$ is equal to and opposite to the direction of weight$(mg)$ of a body.
Now, we know that Centrifugal Force acting on the body:
${F_c} = m\dfrac{{{v^2}}}{r}$ where,
v = speed of a body
r = radius of curve taken by body
Also, we know that $F = \mu N$where,
F = Frictional Force and$\mu $= Coefficient of friction
To avoid slip, the frictional force must be balanced by centrifugal force i.e.,
$F = {F_c}$
$\mu N = m\dfrac{{{v^2}}}{r}$
Substitute $N = mg$ in the above expression, we get
$\mu (mg) = m\dfrac{{{v^2}}}{r}$
$\mu = \dfrac{{{v^2}}}{{gr}}$
Thus, the minimum value of the coefficient of friction so that this negotiation may take place safely is $\mu = \dfrac{{{v^2}}}{{gr}}$.
Hence, the correct option is (B) $\mu = \dfrac{{{v^2}}}{{gr}}$ >
Note: Since this is a problem based on the balancing of two different forces hence, given conditions are to be analyzed very carefully and only after which the procedure of solving the problem is identified. To have a better understanding of the formulas used, it is essential to understand which kind of forces influences the problem.
Complete answer:
Mass of a motorcyclist $ = m$ (given)
Since the gravity $g$ acts downward. Therefore, the weight of a body $ = mg$
Let us consider the normal force $N$ is equal to and opposite to the direction of weight$(mg)$ of a body.
Now, we know that Centrifugal Force acting on the body:
${F_c} = m\dfrac{{{v^2}}}{r}$ where,
v = speed of a body
r = radius of curve taken by body
Also, we know that $F = \mu N$where,
F = Frictional Force and$\mu $= Coefficient of friction
To avoid slip, the frictional force must be balanced by centrifugal force i.e.,
$F = {F_c}$
$\mu N = m\dfrac{{{v^2}}}{r}$
Substitute $N = mg$ in the above expression, we get
$\mu (mg) = m\dfrac{{{v^2}}}{r}$
$\mu = \dfrac{{{v^2}}}{{gr}}$
Thus, the minimum value of the coefficient of friction so that this negotiation may take place safely is $\mu = \dfrac{{{v^2}}}{{gr}}$.
Hence, the correct option is (B) $\mu = \dfrac{{{v^2}}}{{gr}}$ >
Note: Since this is a problem based on the balancing of two different forces hence, given conditions are to be analyzed very carefully and only after which the procedure of solving the problem is identified. To have a better understanding of the formulas used, it is essential to understand which kind of forces influences the problem.
Recently Updated Pages
Difference Between Mass and Weight

Uniform Acceleration - Definition, Equation, Examples, and FAQs

A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

Two pi and half sigma bonds are present in A N2 + B class 11 chemistry JEE_Main

Trending doubts
JEE Main 2025 Session 2 Registration Open – Apply Now! Form Link, Last Date and Fees

Molar Conductivity

Raoult's Law with Examples

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Salt Bridge

Other Pages
CBSE Date Sheet 2025 Class 12 - Download Timetable PDF for FREE Now

JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

CBSE Class 10 Hindi Sample Papers with Solutions 2024-25 FREE PDF

CBSE Board Exam Date Sheet Class 10 2025 (OUT): Download Exam Dates PDF

CBSE Class 10 Hindi Course-B Syllabus 2024-25 - Revised PDF Download

SST Syllabus Class 10 CBSE 2024-25 Revised PDF Download
