
The vapour pressure of pure $A$ is 10 torr and at the same temperature, when $1g$ of $B$ is dissolved in $20g$ of $A$, its vapour pressure is reduced to 9 torr. If the molecular mass of $A$ is 200amu then the molecular mass of $B$ is:
A. 100amu
B. 90amu
C. 75amu
D. 120amu
Answer
154.5k+ views
Hint: Consider what is happening after the addition of the solute and recall the formula that is used for the relative lowering of vapour pressure. Convert the number of moles to the weight divided by the molecular weight and then solve for the molecular weight of the solute.
Complete step by step solution:
In this problem, we can see that the vapour pressure is getting lowered when, compared to the vapour pressure of a pure substance, an impurity is added to it. This impurity will be our solute. So, we will use the formula for the relative lowering of vapour pressure to calculate the molecular mass of the solute.
The formula for the relative lowering of vapour pressure states that the reduced vapour pressure caused by the solute divided by the vapour pressure of the pure substance is equal to the number of moles of the solute divided by the total number of moles. The formula is as follows:
\[\dfrac{{{P}_{o}}-P}{{{P}_{o}}}=\dfrac{{{n}_{1}}}{{{n}_{1}}+{{n}_{2}}}\]
Where,
${{P}_{o}}$ = vapour pressure of pure substance
$P$ = reduced vapour pressure after addition of solvent
${{n}_{1}}$ = number of moles of solute
${{n}_{2}}$ = number of moles of solvent
We know that the formula for the number of moles is the weight given divided by the molecular weight of that substance. So, the formula is:
\[n=\dfrac{w}{m}\]
Where,
$w$ = weight of substance
$m$ = molecular weight of substance
From the given question, we know that:
${{P}_{o}}$ = 10 torr
$P$ = 9 torr
${{w}_{1}}$ = 1 gram
${{w}_{2}}$ = 20 grams
${{m}_{2}}$ = 200 amu
We have modified the equation to:
\[\begin{align}
& \dfrac{{{P}_{o}}-P}{{{P}_{o}}}=\dfrac{\dfrac{{{w}_{1}}}{{{m}_{1}}}}{\dfrac{{{w}_{1}}}{{{m}_{1}}}+\dfrac{{{w}_{2}}}{{{m}_{2}}}} \\
& \dfrac{{{P}_{o}}-P}{{{P}_{o}}}=\dfrac{{{w}_{1}}{{m}_{2}}}{{{w}_{1}}{{m}_{2}}+{{w}_{2}}{{m}_{1}}} \\
\end{align}\]
Now, we will put the values in the equation.
\[\dfrac{10-9}{10}=\dfrac{1\times 200}{(1\times 200)+20\times {{m}_{1}}}\]
Solving for ${{m}_{1}}$ we get:
\[\begin{align}
& 200+20{{m}_{1}}=2000 \\
& 20{{m}_{1}}=1800 \\
& {{m}_{1}}=90 \\
\end{align}\]
So, the molecular weight of substance B is 90 amu.
Hence, the correct answer is ‘B. 90amu’
Note: There is no need to convert all the units to the SI units or some standard units as they are all going to cancel out anyway in the end. Remember to consider the formula for how to calculate the moles of any substance.
Complete step by step solution:
In this problem, we can see that the vapour pressure is getting lowered when, compared to the vapour pressure of a pure substance, an impurity is added to it. This impurity will be our solute. So, we will use the formula for the relative lowering of vapour pressure to calculate the molecular mass of the solute.
The formula for the relative lowering of vapour pressure states that the reduced vapour pressure caused by the solute divided by the vapour pressure of the pure substance is equal to the number of moles of the solute divided by the total number of moles. The formula is as follows:
\[\dfrac{{{P}_{o}}-P}{{{P}_{o}}}=\dfrac{{{n}_{1}}}{{{n}_{1}}+{{n}_{2}}}\]
Where,
${{P}_{o}}$ = vapour pressure of pure substance
$P$ = reduced vapour pressure after addition of solvent
${{n}_{1}}$ = number of moles of solute
${{n}_{2}}$ = number of moles of solvent
We know that the formula for the number of moles is the weight given divided by the molecular weight of that substance. So, the formula is:
\[n=\dfrac{w}{m}\]
Where,
$w$ = weight of substance
$m$ = molecular weight of substance
From the given question, we know that:
${{P}_{o}}$ = 10 torr
$P$ = 9 torr
${{w}_{1}}$ = 1 gram
${{w}_{2}}$ = 20 grams
${{m}_{2}}$ = 200 amu
We have modified the equation to:
\[\begin{align}
& \dfrac{{{P}_{o}}-P}{{{P}_{o}}}=\dfrac{\dfrac{{{w}_{1}}}{{{m}_{1}}}}{\dfrac{{{w}_{1}}}{{{m}_{1}}}+\dfrac{{{w}_{2}}}{{{m}_{2}}}} \\
& \dfrac{{{P}_{o}}-P}{{{P}_{o}}}=\dfrac{{{w}_{1}}{{m}_{2}}}{{{w}_{1}}{{m}_{2}}+{{w}_{2}}{{m}_{1}}} \\
\end{align}\]
Now, we will put the values in the equation.
\[\dfrac{10-9}{10}=\dfrac{1\times 200}{(1\times 200)+20\times {{m}_{1}}}\]
Solving for ${{m}_{1}}$ we get:
\[\begin{align}
& 200+20{{m}_{1}}=2000 \\
& 20{{m}_{1}}=1800 \\
& {{m}_{1}}=90 \\
\end{align}\]
So, the molecular weight of substance B is 90 amu.
Hence, the correct answer is ‘B. 90amu’
Note: There is no need to convert all the units to the SI units or some standard units as they are all going to cancel out anyway in the end. Remember to consider the formula for how to calculate the moles of any substance.
Recently Updated Pages
Difference Between Alcohol and Phenol

Classification of Drugs Based on Pharmacological Effect, Drug Action

JEE Main Mock Test Series Class 12 Chemistry for FREE

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Electrical Field of Charged Spherical Shell - JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 12 Chemistry Chapter 1 Solutions

NCERT Solutions for Class 12 Chemistry Chapter 2 Electrochemistry

NCERT Solutions for Class 12 Chemistry Chapter 6 Haloalkanes and Haloarenes

Solutions Class 12 Notes: CBSE Chemistry Chapter 1
