
Which of the following is true in triangle ABC.
A. \[\left( {b + c} \right)\sin \dfrac{{B - C}}{2} = 2a\cos \dfrac{A}{2}\]
B. \[\left( {b + c} \right)\cos \dfrac{A}{2} = 2a\sin \dfrac{{B - C}}{2}\]
C. \[\left( {b - c} \right)\cos \dfrac{A}{2} = a\sin \dfrac{{B - C}}{2}\]
D. \[\left( {b - c} \right)\sin \dfrac{{B - C}}{2} = 2a\cos \dfrac{A}{2}\]
Answer
164.1k+ views
Hint: We will use sine law to find the value of \[\dfrac{{b - c}}{a}\]. Then we will apply the formula of the difference between two sin angles, the half angle formula of sine, and the sum of angles of a triangle to get the desired result.
Formula used:
Double angle formula
\[\sin 2\theta = 2\sin \theta \cos \theta \]
Difference in sin angle
\[\sin C - \sin D = 2\cos \dfrac{{C - D}}{2}\sin \dfrac{{C + D}}{2}\]
Sine Law
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
Complete step by step solution:
We will find the value of \[\dfrac{{b - c}}{a}\].
We know sine law \[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = \dfrac{1}{k}\]
\[a = k\sin A\], \[b = k\sin B\], and \[c = k\sin C\]
Now substitute \[a = k\sin A\], \[b = k\sin B\], and \[c = k\sin C\] in \[\dfrac{{b - c}}{a}\]
\[\dfrac{{k\sin B - k\sin C}}{{k\sin A}}\]
\[ = \dfrac{{\sin B - \sin C}}{{\sin A}}\]
Now applying the formula \[\sin C - \sin D = 2\cos \dfrac{{C + D}}{2}\sin \dfrac{{C - D}}{2}\] in the numerator
\[ = \dfrac{{2\cos \dfrac{{B + C}}{2}\sin \dfrac{{B - C}}{2}}}{{\sin A}}\]
Now applying double angle formula in denominator
\[ = \dfrac{{2\cos \dfrac{{B + C}}{2}\sin \dfrac{{B - C}}{2}}}{{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}}\]
We know that the sum of all angles of a triangle is \[\pi \]. Thus \[A + B + C = \pi \]. This implies \[\dfrac{{B + C}}{2} = \dfrac{\pi }{2} - \dfrac{A}{2}\].
Putting \[\dfrac{{B + C}}{2} = \dfrac{\pi }{2} - \dfrac{A}{2}\] in the above expression
\[ = \dfrac{{2\cos \left( {\dfrac{\pi }{2} - \dfrac{A}{2}} \right)\sin \dfrac{{B - C}}{2}}}{{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}}\]
\[ = \dfrac{{2\sin \dfrac{A}{2}\sin \dfrac{{B - C}}{2}}}{{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}}\]
Cancel out \[2\sin \dfrac{A}{2}\] from the denominator and numerator
\[ = \dfrac{{\sin \dfrac{{B - C}}{2}}}{{\cos \dfrac{A}{2}}}\]
Therefore, \[\dfrac{{b - c}}{a} = \dfrac{{\sin \dfrac{{B - C}}{2}}}{{\cos \dfrac{A}{2}}}\]
\[ \Rightarrow \left( {b - c} \right)\cos \dfrac{A}{2} = a\sin \dfrac{{B - C}}{2}\]
Hence option C is the correct option.
Note: Some students often make mistakes in the formula of difference of two sin angles. They used \[\sin C - \sin D = 2\sin \dfrac{{C + D}}{2}\cos \dfrac{{C - D}}{2}\] which is incorrect. The correct formula is \[\sin C - \sin D = 2\cos \dfrac{{C + D}}{2}\sin \dfrac{{C - D}}{2}\].
Formula used:
Double angle formula
\[\sin 2\theta = 2\sin \theta \cos \theta \]
Difference in sin angle
\[\sin C - \sin D = 2\cos \dfrac{{C - D}}{2}\sin \dfrac{{C + D}}{2}\]
Sine Law
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
Complete step by step solution:
We will find the value of \[\dfrac{{b - c}}{a}\].
We know sine law \[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = \dfrac{1}{k}\]
\[a = k\sin A\], \[b = k\sin B\], and \[c = k\sin C\]
Now substitute \[a = k\sin A\], \[b = k\sin B\], and \[c = k\sin C\] in \[\dfrac{{b - c}}{a}\]
\[\dfrac{{k\sin B - k\sin C}}{{k\sin A}}\]
\[ = \dfrac{{\sin B - \sin C}}{{\sin A}}\]
Now applying the formula \[\sin C - \sin D = 2\cos \dfrac{{C + D}}{2}\sin \dfrac{{C - D}}{2}\] in the numerator
\[ = \dfrac{{2\cos \dfrac{{B + C}}{2}\sin \dfrac{{B - C}}{2}}}{{\sin A}}\]
Now applying double angle formula in denominator
\[ = \dfrac{{2\cos \dfrac{{B + C}}{2}\sin \dfrac{{B - C}}{2}}}{{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}}\]
We know that the sum of all angles of a triangle is \[\pi \]. Thus \[A + B + C = \pi \]. This implies \[\dfrac{{B + C}}{2} = \dfrac{\pi }{2} - \dfrac{A}{2}\].
Putting \[\dfrac{{B + C}}{2} = \dfrac{\pi }{2} - \dfrac{A}{2}\] in the above expression
\[ = \dfrac{{2\cos \left( {\dfrac{\pi }{2} - \dfrac{A}{2}} \right)\sin \dfrac{{B - C}}{2}}}{{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}}\]
\[ = \dfrac{{2\sin \dfrac{A}{2}\sin \dfrac{{B - C}}{2}}}{{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}}\]
Cancel out \[2\sin \dfrac{A}{2}\] from the denominator and numerator
\[ = \dfrac{{\sin \dfrac{{B - C}}{2}}}{{\cos \dfrac{A}{2}}}\]
Therefore, \[\dfrac{{b - c}}{a} = \dfrac{{\sin \dfrac{{B - C}}{2}}}{{\cos \dfrac{A}{2}}}\]
\[ \Rightarrow \left( {b - c} \right)\cos \dfrac{A}{2} = a\sin \dfrac{{B - C}}{2}\]
Hence option C is the correct option.
Note: Some students often make mistakes in the formula of difference of two sin angles. They used \[\sin C - \sin D = 2\sin \dfrac{{C + D}}{2}\cos \dfrac{{C - D}}{2}\] which is incorrect. The correct formula is \[\sin C - \sin D = 2\cos \dfrac{{C + D}}{2}\sin \dfrac{{C - D}}{2}\].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
