
Which of the following is true for y(x) that satisfies the differential equation \[\dfrac{{dy}}{{dx}} = xy - 1 + x - y;y(0) = 0\] ?
A. \[y{\rm{ }}\left( 1 \right){\rm{ }} = {\rm{ }}1\]
B. \[y{\rm{ }}\left( 1 \right){\rm{ }} = {\rm{ }}{e^{\dfrac{1}{2}}}\;-{\rm{ }}1\]
C.\[y{\rm{ }}\left( 1 \right){\rm{ }} = {\rm{ }}{e^{\dfrac{1}{2}}}\;-{\rm{ }}{e^{ - \dfrac{1}{2}}}\]
D. \[y{\rm{ }}\left( 1 \right){\rm{ }} = {\rm{ }}{e^{ - \dfrac{1}{2}}}\;-{\rm{ }}1\]
Answer
217.5k+ views
Hint: Use separation of variable method to separate the variables then integrate the function \[\dfrac{{dy}}{{y + 1}} = (x - 1)dx\] to obtain y from the given differential equation, then use the initial condition \[y(0) = 0\] to obtain the value of the constant C. Then substitute 1 for x in the equation \[\log \left| {y + 1} \right| = \dfrac{{{x^2}}}{2} - x\] to obtain \[y(1)\].
Formula used:
1. \[\int {\dfrac{{dx}}{{x - a}} = \log \left| {x - a} \right|} \]
2. \[\int {xdx = \dfrac{{{x^2}}}{2}} \]
3. \[\int {dx = x} \]
Complete step by step solution:
It is given that \[\dfrac{{dy}}{{dx}} = xy - 1 + x - y;y(0) = 0.\]
Now,
\[\dfrac{{dy}}{{dx}} = xy - 1 + x - y\]
\[\dfrac{{dy}}{{dx}} = xy + x - y - 1\]
\[\dfrac{{dy}}{{dx}} = x(y + 1) - 1(y + 1)\]
\[\dfrac{{dy}}{{dx}} = (x - 1)(y + 1)\]
\[\dfrac{{dy}}{{y + 1}} = (x - 1)dx\]
Integrate the equation \[\dfrac{{dy}}{{y + 1}} = (x - 1)dx\] to obtain the value of y.
\[\int {\dfrac{{dy}}{{y + 1}} = \int {(x - 1)dx} } \]
\[\log \left| {y + 1} \right| = \dfrac{{{x^2}}}{2} - x + C\], where C is integrating constant.
Substitute 0 for x and y in the equation \[\log \left| {y + 1} \right| = \dfrac{{{x^2}}}{2} - x + C\] to obtain the value of C.
So,
\[\begin{array}{l}\log \left| {0 + 1} \right| = \dfrac{{{0^2}}}{2} - 0 + C\\ \Rightarrow \log 1 = C\\ \Rightarrow C = 0\end{array}\]
Therefore, the equation is \[\log \left| {y + 1} \right| = \dfrac{{{x^2}}}{2} - x\]
Substitute 1 for x in the equation \[\log \left| {y + 1} \right| = \dfrac{{{x^2}}}{2} - x\] and obtain the value.
Hence,
\[\log \left| {y + 1} \right| = \dfrac{{{1^2}}}{2} - 1\]
\[ = - \dfrac{1}{2}\]
\[ \Rightarrow y + 1 = {e^{ - \dfrac{1}{2}}}\]
\[ \Rightarrow y = {e^{ - \dfrac{1}{2}}} - 1\]
The correct option is D.
Note: From the equation \[\log \left| {y + 1} \right| = \dfrac{{{x^2}}}{2} - x\] students can directly find the value of y as \[y = {e^{\dfrac{{{x^2}}}{2} - x}} - 1\], then substitute 1 for x in the equation \[y = {e^{\dfrac{{{x^2}}}{2} - x}} - 1\]and obtain the answer \[y = {e^{ - \dfrac{1}{2}}} - 1\].
Formula used:
1. \[\int {\dfrac{{dx}}{{x - a}} = \log \left| {x - a} \right|} \]
2. \[\int {xdx = \dfrac{{{x^2}}}{2}} \]
3. \[\int {dx = x} \]
Complete step by step solution:
It is given that \[\dfrac{{dy}}{{dx}} = xy - 1 + x - y;y(0) = 0.\]
Now,
\[\dfrac{{dy}}{{dx}} = xy - 1 + x - y\]
\[\dfrac{{dy}}{{dx}} = xy + x - y - 1\]
\[\dfrac{{dy}}{{dx}} = x(y + 1) - 1(y + 1)\]
\[\dfrac{{dy}}{{dx}} = (x - 1)(y + 1)\]
\[\dfrac{{dy}}{{y + 1}} = (x - 1)dx\]
Integrate the equation \[\dfrac{{dy}}{{y + 1}} = (x - 1)dx\] to obtain the value of y.
\[\int {\dfrac{{dy}}{{y + 1}} = \int {(x - 1)dx} } \]
\[\log \left| {y + 1} \right| = \dfrac{{{x^2}}}{2} - x + C\], where C is integrating constant.
Substitute 0 for x and y in the equation \[\log \left| {y + 1} \right| = \dfrac{{{x^2}}}{2} - x + C\] to obtain the value of C.
So,
\[\begin{array}{l}\log \left| {0 + 1} \right| = \dfrac{{{0^2}}}{2} - 0 + C\\ \Rightarrow \log 1 = C\\ \Rightarrow C = 0\end{array}\]
Therefore, the equation is \[\log \left| {y + 1} \right| = \dfrac{{{x^2}}}{2} - x\]
Substitute 1 for x in the equation \[\log \left| {y + 1} \right| = \dfrac{{{x^2}}}{2} - x\] and obtain the value.
Hence,
\[\log \left| {y + 1} \right| = \dfrac{{{1^2}}}{2} - 1\]
\[ = - \dfrac{1}{2}\]
\[ \Rightarrow y + 1 = {e^{ - \dfrac{1}{2}}}\]
\[ \Rightarrow y = {e^{ - \dfrac{1}{2}}} - 1\]
The correct option is D.
Note: From the equation \[\log \left| {y + 1} \right| = \dfrac{{{x^2}}}{2} - x\] students can directly find the value of y as \[y = {e^{\dfrac{{{x^2}}}{2} - x}} - 1\], then substitute 1 for x in the equation \[y = {e^{\dfrac{{{x^2}}}{2} - x}} - 1\]and obtain the answer \[y = {e^{ - \dfrac{1}{2}}} - 1\].
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

