
Which of the following is equal to the expression \[{}^n{C_r} + 4 \cdot {}^n{C_{r - 1}} + 6 \cdot {}^n{C_{r - 2}} + 4 \cdot {}^n{C_{r - 3}} + {}^n{C_{r - 4}}\].
A \[{}^{n + 4}{C_r}\]
B \[2 \cdot {}^{n + 4}{C_{r - 1}}\]
C \[4 \cdot {}^n{C_r}\]
D \[11 \cdot {}^n{C_r}\]
Answer
232.8k+ views
Hint: Selection of items from a given collection irrespective of order of section is called combination.
Formula Used: \[{}^n{C_r} + {}^n{C_{r - 1}} = {}^{n + 1}{C_r}\]
Here, n be the total items and r be the selected items.
Complete step by step solution: The given expression is \[{}^n{C_r} + 4 \cdot {}^n{C_{r - 1}} + 6 \cdot {}^n{C_{r - 2}} + 4 \cdot {}^n{C_{r - 3}} + {}^n{C_{r - 4}}\].
First arrange the terms and simplify the expression.
\[{}^n{C_r} + 4 \cdot {}^n{C_{r - 1}} + 6 \cdot {}^n{C_{r - 2}} + 4 \cdot {}^n{C_{r - 3}} + {}^n{C_{r - 4}} = \left( {{}^n{C_r} + {}^n{C_{r - 1}}} \right) + 3 \cdot \left( {{}^n{C_{r - 1}} + {}^n{C_{r - 2}}} \right) + 3 \cdot \left( {{}^n{C_{r - 2}} + {}^n{C_{r - 3}}} \right) + \left( {{}^n{C_{r - 3}} + {}^n{C_{r - 4}}} \right)\]
Now use the concept of \[{}^n{C_r} + {}^n{C_{r - 1}} = {}^{n + 1}{C_r}\] and simplify the expression.
\[ \Rightarrow {}^{n + 1}{C_r} + 3 \cdot {}^{n + 1}{C_{r - 1}} + 3 \cdot {}^{n + 1}{C_{r - 2}} + {}^{n + 1}{C_{r - 3}}\]
Rearrange the terms and write the expression
\[ \Rightarrow \left( {{}^{n + 1}{C_r} + {}^{n + 1}{C_{r - 1}}} \right) + 2\left( {{}^{n + 1}{C_{r - 1}} + {}^{n + 1}{C_{r - 2}}} \right) + \left( {{}^{n + 1}{C_{r - 2}} + {}^{n + 1}{C_{r - 3}}} \right)\]
Simplify the terms as follows.
\[ \Rightarrow \left( {{}^{n + 1}{C_r} + {}^{n + 1}{C_{r - 1}}} \right) + 2\left( {{}^{n + 1}{C_{r - 1}} + {}^{n + 1}{C_{r - 2}}} \right) + \left( {{}^{n + 1}{C_{r - 2}} + {}^{n + 1}{C_{r - 3}}} \right)\]
Now, simplify the expression as follows.
\[ \Rightarrow {}^{n + 2}{C_r} + 2 \cdot {}^{n + 2}{C_{r - 1}} + {}^{n + 2}{C_{r - 2}}\]
Hence, the expression becomes.
\[ \Rightarrow \left( {{}^{n + 2}{C_r} + {}^{n + 2}{C_{r - 1}}} \right) + \left( {{}^{n + 2}{C_{r - 1}} + {}^{n + 2}{C_{r - 2}}} \right)\]
Again, simplify the expression
\[ \Rightarrow {}^{n + 3}{C_r} + {}^{n + 3}{C_{r - 1}}\]
So, the expression is reduced as follows.
\[ \Rightarrow {}^{n + 4}{C_r}\]
The expression \[{}^n{C_r} + 4 \cdot {}^n{C_{r - 1}} + 6 \cdot {}^n{C_{r - 2}} + 4 \cdot {}^n{C_{r - 3}} + {}^n{C_{r - 4}}\] is equal to \[{}^{n + 4}{C_r}\].
Option ‘A’ is correct
Note: The common mistake students make is that any term is missed that gives the wrong answer.
Formula Used: \[{}^n{C_r} + {}^n{C_{r - 1}} = {}^{n + 1}{C_r}\]
Here, n be the total items and r be the selected items.
Complete step by step solution: The given expression is \[{}^n{C_r} + 4 \cdot {}^n{C_{r - 1}} + 6 \cdot {}^n{C_{r - 2}} + 4 \cdot {}^n{C_{r - 3}} + {}^n{C_{r - 4}}\].
First arrange the terms and simplify the expression.
\[{}^n{C_r} + 4 \cdot {}^n{C_{r - 1}} + 6 \cdot {}^n{C_{r - 2}} + 4 \cdot {}^n{C_{r - 3}} + {}^n{C_{r - 4}} = \left( {{}^n{C_r} + {}^n{C_{r - 1}}} \right) + 3 \cdot \left( {{}^n{C_{r - 1}} + {}^n{C_{r - 2}}} \right) + 3 \cdot \left( {{}^n{C_{r - 2}} + {}^n{C_{r - 3}}} \right) + \left( {{}^n{C_{r - 3}} + {}^n{C_{r - 4}}} \right)\]
Now use the concept of \[{}^n{C_r} + {}^n{C_{r - 1}} = {}^{n + 1}{C_r}\] and simplify the expression.
\[ \Rightarrow {}^{n + 1}{C_r} + 3 \cdot {}^{n + 1}{C_{r - 1}} + 3 \cdot {}^{n + 1}{C_{r - 2}} + {}^{n + 1}{C_{r - 3}}\]
Rearrange the terms and write the expression
\[ \Rightarrow \left( {{}^{n + 1}{C_r} + {}^{n + 1}{C_{r - 1}}} \right) + 2\left( {{}^{n + 1}{C_{r - 1}} + {}^{n + 1}{C_{r - 2}}} \right) + \left( {{}^{n + 1}{C_{r - 2}} + {}^{n + 1}{C_{r - 3}}} \right)\]
Simplify the terms as follows.
\[ \Rightarrow \left( {{}^{n + 1}{C_r} + {}^{n + 1}{C_{r - 1}}} \right) + 2\left( {{}^{n + 1}{C_{r - 1}} + {}^{n + 1}{C_{r - 2}}} \right) + \left( {{}^{n + 1}{C_{r - 2}} + {}^{n + 1}{C_{r - 3}}} \right)\]
Now, simplify the expression as follows.
\[ \Rightarrow {}^{n + 2}{C_r} + 2 \cdot {}^{n + 2}{C_{r - 1}} + {}^{n + 2}{C_{r - 2}}\]
Hence, the expression becomes.
\[ \Rightarrow \left( {{}^{n + 2}{C_r} + {}^{n + 2}{C_{r - 1}}} \right) + \left( {{}^{n + 2}{C_{r - 1}} + {}^{n + 2}{C_{r - 2}}} \right)\]
Again, simplify the expression
\[ \Rightarrow {}^{n + 3}{C_r} + {}^{n + 3}{C_{r - 1}}\]
So, the expression is reduced as follows.
\[ \Rightarrow {}^{n + 4}{C_r}\]
The expression \[{}^n{C_r} + 4 \cdot {}^n{C_{r - 1}} + 6 \cdot {}^n{C_{r - 2}} + 4 \cdot {}^n{C_{r - 3}} + {}^n{C_{r - 4}}\] is equal to \[{}^{n + 4}{C_r}\].
Option ‘A’ is correct
Note: The common mistake students make is that any term is missed that gives the wrong answer.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

