
Which of the following is equal to the expression \[{}^n{C_r} + 4 \cdot {}^n{C_{r - 1}} + 6 \cdot {}^n{C_{r - 2}} + 4 \cdot {}^n{C_{r - 3}} + {}^n{C_{r - 4}}\].
A \[{}^{n + 4}{C_r}\]
B \[2 \cdot {}^{n + 4}{C_{r - 1}}\]
C \[4 \cdot {}^n{C_r}\]
D \[11 \cdot {}^n{C_r}\]
Answer
216.3k+ views
Hint: Selection of items from a given collection irrespective of order of section is called combination.
Formula Used: \[{}^n{C_r} + {}^n{C_{r - 1}} = {}^{n + 1}{C_r}\]
Here, n be the total items and r be the selected items.
Complete step by step solution: The given expression is \[{}^n{C_r} + 4 \cdot {}^n{C_{r - 1}} + 6 \cdot {}^n{C_{r - 2}} + 4 \cdot {}^n{C_{r - 3}} + {}^n{C_{r - 4}}\].
First arrange the terms and simplify the expression.
\[{}^n{C_r} + 4 \cdot {}^n{C_{r - 1}} + 6 \cdot {}^n{C_{r - 2}} + 4 \cdot {}^n{C_{r - 3}} + {}^n{C_{r - 4}} = \left( {{}^n{C_r} + {}^n{C_{r - 1}}} \right) + 3 \cdot \left( {{}^n{C_{r - 1}} + {}^n{C_{r - 2}}} \right) + 3 \cdot \left( {{}^n{C_{r - 2}} + {}^n{C_{r - 3}}} \right) + \left( {{}^n{C_{r - 3}} + {}^n{C_{r - 4}}} \right)\]
Now use the concept of \[{}^n{C_r} + {}^n{C_{r - 1}} = {}^{n + 1}{C_r}\] and simplify the expression.
\[ \Rightarrow {}^{n + 1}{C_r} + 3 \cdot {}^{n + 1}{C_{r - 1}} + 3 \cdot {}^{n + 1}{C_{r - 2}} + {}^{n + 1}{C_{r - 3}}\]
Rearrange the terms and write the expression
\[ \Rightarrow \left( {{}^{n + 1}{C_r} + {}^{n + 1}{C_{r - 1}}} \right) + 2\left( {{}^{n + 1}{C_{r - 1}} + {}^{n + 1}{C_{r - 2}}} \right) + \left( {{}^{n + 1}{C_{r - 2}} + {}^{n + 1}{C_{r - 3}}} \right)\]
Simplify the terms as follows.
\[ \Rightarrow \left( {{}^{n + 1}{C_r} + {}^{n + 1}{C_{r - 1}}} \right) + 2\left( {{}^{n + 1}{C_{r - 1}} + {}^{n + 1}{C_{r - 2}}} \right) + \left( {{}^{n + 1}{C_{r - 2}} + {}^{n + 1}{C_{r - 3}}} \right)\]
Now, simplify the expression as follows.
\[ \Rightarrow {}^{n + 2}{C_r} + 2 \cdot {}^{n + 2}{C_{r - 1}} + {}^{n + 2}{C_{r - 2}}\]
Hence, the expression becomes.
\[ \Rightarrow \left( {{}^{n + 2}{C_r} + {}^{n + 2}{C_{r - 1}}} \right) + \left( {{}^{n + 2}{C_{r - 1}} + {}^{n + 2}{C_{r - 2}}} \right)\]
Again, simplify the expression
\[ \Rightarrow {}^{n + 3}{C_r} + {}^{n + 3}{C_{r - 1}}\]
So, the expression is reduced as follows.
\[ \Rightarrow {}^{n + 4}{C_r}\]
The expression \[{}^n{C_r} + 4 \cdot {}^n{C_{r - 1}} + 6 \cdot {}^n{C_{r - 2}} + 4 \cdot {}^n{C_{r - 3}} + {}^n{C_{r - 4}}\] is equal to \[{}^{n + 4}{C_r}\].
Option ‘A’ is correct
Note: The common mistake students make is that any term is missed that gives the wrong answer.
Formula Used: \[{}^n{C_r} + {}^n{C_{r - 1}} = {}^{n + 1}{C_r}\]
Here, n be the total items and r be the selected items.
Complete step by step solution: The given expression is \[{}^n{C_r} + 4 \cdot {}^n{C_{r - 1}} + 6 \cdot {}^n{C_{r - 2}} + 4 \cdot {}^n{C_{r - 3}} + {}^n{C_{r - 4}}\].
First arrange the terms and simplify the expression.
\[{}^n{C_r} + 4 \cdot {}^n{C_{r - 1}} + 6 \cdot {}^n{C_{r - 2}} + 4 \cdot {}^n{C_{r - 3}} + {}^n{C_{r - 4}} = \left( {{}^n{C_r} + {}^n{C_{r - 1}}} \right) + 3 \cdot \left( {{}^n{C_{r - 1}} + {}^n{C_{r - 2}}} \right) + 3 \cdot \left( {{}^n{C_{r - 2}} + {}^n{C_{r - 3}}} \right) + \left( {{}^n{C_{r - 3}} + {}^n{C_{r - 4}}} \right)\]
Now use the concept of \[{}^n{C_r} + {}^n{C_{r - 1}} = {}^{n + 1}{C_r}\] and simplify the expression.
\[ \Rightarrow {}^{n + 1}{C_r} + 3 \cdot {}^{n + 1}{C_{r - 1}} + 3 \cdot {}^{n + 1}{C_{r - 2}} + {}^{n + 1}{C_{r - 3}}\]
Rearrange the terms and write the expression
\[ \Rightarrow \left( {{}^{n + 1}{C_r} + {}^{n + 1}{C_{r - 1}}} \right) + 2\left( {{}^{n + 1}{C_{r - 1}} + {}^{n + 1}{C_{r - 2}}} \right) + \left( {{}^{n + 1}{C_{r - 2}} + {}^{n + 1}{C_{r - 3}}} \right)\]
Simplify the terms as follows.
\[ \Rightarrow \left( {{}^{n + 1}{C_r} + {}^{n + 1}{C_{r - 1}}} \right) + 2\left( {{}^{n + 1}{C_{r - 1}} + {}^{n + 1}{C_{r - 2}}} \right) + \left( {{}^{n + 1}{C_{r - 2}} + {}^{n + 1}{C_{r - 3}}} \right)\]
Now, simplify the expression as follows.
\[ \Rightarrow {}^{n + 2}{C_r} + 2 \cdot {}^{n + 2}{C_{r - 1}} + {}^{n + 2}{C_{r - 2}}\]
Hence, the expression becomes.
\[ \Rightarrow \left( {{}^{n + 2}{C_r} + {}^{n + 2}{C_{r - 1}}} \right) + \left( {{}^{n + 2}{C_{r - 1}} + {}^{n + 2}{C_{r - 2}}} \right)\]
Again, simplify the expression
\[ \Rightarrow {}^{n + 3}{C_r} + {}^{n + 3}{C_{r - 1}}\]
So, the expression is reduced as follows.
\[ \Rightarrow {}^{n + 4}{C_r}\]
The expression \[{}^n{C_r} + 4 \cdot {}^n{C_{r - 1}} + 6 \cdot {}^n{C_{r - 2}} + 4 \cdot {}^n{C_{r - 3}} + {}^n{C_{r - 4}}\] is equal to \[{}^{n + 4}{C_r}\].
Option ‘A’ is correct
Note: The common mistake students make is that any term is missed that gives the wrong answer.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

