
Which of the following is equal to the expression \[{}^n{C_r} + 4 \cdot {}^n{C_{r - 1}} + 6 \cdot {}^n{C_{r - 2}} + 4 \cdot {}^n{C_{r - 3}} + {}^n{C_{r - 4}}\].
A \[{}^{n + 4}{C_r}\]
B \[2 \cdot {}^{n + 4}{C_{r - 1}}\]
C \[4 \cdot {}^n{C_r}\]
D \[11 \cdot {}^n{C_r}\]
Answer
164.7k+ views
Hint: Selection of items from a given collection irrespective of order of section is called combination.
Formula Used: \[{}^n{C_r} + {}^n{C_{r - 1}} = {}^{n + 1}{C_r}\]
Here, n be the total items and r be the selected items.
Complete step by step solution: The given expression is \[{}^n{C_r} + 4 \cdot {}^n{C_{r - 1}} + 6 \cdot {}^n{C_{r - 2}} + 4 \cdot {}^n{C_{r - 3}} + {}^n{C_{r - 4}}\].
First arrange the terms and simplify the expression.
\[{}^n{C_r} + 4 \cdot {}^n{C_{r - 1}} + 6 \cdot {}^n{C_{r - 2}} + 4 \cdot {}^n{C_{r - 3}} + {}^n{C_{r - 4}} = \left( {{}^n{C_r} + {}^n{C_{r - 1}}} \right) + 3 \cdot \left( {{}^n{C_{r - 1}} + {}^n{C_{r - 2}}} \right) + 3 \cdot \left( {{}^n{C_{r - 2}} + {}^n{C_{r - 3}}} \right) + \left( {{}^n{C_{r - 3}} + {}^n{C_{r - 4}}} \right)\]
Now use the concept of \[{}^n{C_r} + {}^n{C_{r - 1}} = {}^{n + 1}{C_r}\] and simplify the expression.
\[ \Rightarrow {}^{n + 1}{C_r} + 3 \cdot {}^{n + 1}{C_{r - 1}} + 3 \cdot {}^{n + 1}{C_{r - 2}} + {}^{n + 1}{C_{r - 3}}\]
Rearrange the terms and write the expression
\[ \Rightarrow \left( {{}^{n + 1}{C_r} + {}^{n + 1}{C_{r - 1}}} \right) + 2\left( {{}^{n + 1}{C_{r - 1}} + {}^{n + 1}{C_{r - 2}}} \right) + \left( {{}^{n + 1}{C_{r - 2}} + {}^{n + 1}{C_{r - 3}}} \right)\]
Simplify the terms as follows.
\[ \Rightarrow \left( {{}^{n + 1}{C_r} + {}^{n + 1}{C_{r - 1}}} \right) + 2\left( {{}^{n + 1}{C_{r - 1}} + {}^{n + 1}{C_{r - 2}}} \right) + \left( {{}^{n + 1}{C_{r - 2}} + {}^{n + 1}{C_{r - 3}}} \right)\]
Now, simplify the expression as follows.
\[ \Rightarrow {}^{n + 2}{C_r} + 2 \cdot {}^{n + 2}{C_{r - 1}} + {}^{n + 2}{C_{r - 2}}\]
Hence, the expression becomes.
\[ \Rightarrow \left( {{}^{n + 2}{C_r} + {}^{n + 2}{C_{r - 1}}} \right) + \left( {{}^{n + 2}{C_{r - 1}} + {}^{n + 2}{C_{r - 2}}} \right)\]
Again, simplify the expression
\[ \Rightarrow {}^{n + 3}{C_r} + {}^{n + 3}{C_{r - 1}}\]
So, the expression is reduced as follows.
\[ \Rightarrow {}^{n + 4}{C_r}\]
The expression \[{}^n{C_r} + 4 \cdot {}^n{C_{r - 1}} + 6 \cdot {}^n{C_{r - 2}} + 4 \cdot {}^n{C_{r - 3}} + {}^n{C_{r - 4}}\] is equal to \[{}^{n + 4}{C_r}\].
Option ‘A’ is correct
Note: The common mistake students make is that any term is missed that gives the wrong answer.
Formula Used: \[{}^n{C_r} + {}^n{C_{r - 1}} = {}^{n + 1}{C_r}\]
Here, n be the total items and r be the selected items.
Complete step by step solution: The given expression is \[{}^n{C_r} + 4 \cdot {}^n{C_{r - 1}} + 6 \cdot {}^n{C_{r - 2}} + 4 \cdot {}^n{C_{r - 3}} + {}^n{C_{r - 4}}\].
First arrange the terms and simplify the expression.
\[{}^n{C_r} + 4 \cdot {}^n{C_{r - 1}} + 6 \cdot {}^n{C_{r - 2}} + 4 \cdot {}^n{C_{r - 3}} + {}^n{C_{r - 4}} = \left( {{}^n{C_r} + {}^n{C_{r - 1}}} \right) + 3 \cdot \left( {{}^n{C_{r - 1}} + {}^n{C_{r - 2}}} \right) + 3 \cdot \left( {{}^n{C_{r - 2}} + {}^n{C_{r - 3}}} \right) + \left( {{}^n{C_{r - 3}} + {}^n{C_{r - 4}}} \right)\]
Now use the concept of \[{}^n{C_r} + {}^n{C_{r - 1}} = {}^{n + 1}{C_r}\] and simplify the expression.
\[ \Rightarrow {}^{n + 1}{C_r} + 3 \cdot {}^{n + 1}{C_{r - 1}} + 3 \cdot {}^{n + 1}{C_{r - 2}} + {}^{n + 1}{C_{r - 3}}\]
Rearrange the terms and write the expression
\[ \Rightarrow \left( {{}^{n + 1}{C_r} + {}^{n + 1}{C_{r - 1}}} \right) + 2\left( {{}^{n + 1}{C_{r - 1}} + {}^{n + 1}{C_{r - 2}}} \right) + \left( {{}^{n + 1}{C_{r - 2}} + {}^{n + 1}{C_{r - 3}}} \right)\]
Simplify the terms as follows.
\[ \Rightarrow \left( {{}^{n + 1}{C_r} + {}^{n + 1}{C_{r - 1}}} \right) + 2\left( {{}^{n + 1}{C_{r - 1}} + {}^{n + 1}{C_{r - 2}}} \right) + \left( {{}^{n + 1}{C_{r - 2}} + {}^{n + 1}{C_{r - 3}}} \right)\]
Now, simplify the expression as follows.
\[ \Rightarrow {}^{n + 2}{C_r} + 2 \cdot {}^{n + 2}{C_{r - 1}} + {}^{n + 2}{C_{r - 2}}\]
Hence, the expression becomes.
\[ \Rightarrow \left( {{}^{n + 2}{C_r} + {}^{n + 2}{C_{r - 1}}} \right) + \left( {{}^{n + 2}{C_{r - 1}} + {}^{n + 2}{C_{r - 2}}} \right)\]
Again, simplify the expression
\[ \Rightarrow {}^{n + 3}{C_r} + {}^{n + 3}{C_{r - 1}}\]
So, the expression is reduced as follows.
\[ \Rightarrow {}^{n + 4}{C_r}\]
The expression \[{}^n{C_r} + 4 \cdot {}^n{C_{r - 1}} + 6 \cdot {}^n{C_{r - 2}} + 4 \cdot {}^n{C_{r - 3}} + {}^n{C_{r - 4}}\] is equal to \[{}^{n + 4}{C_r}\].
Option ‘A’ is correct
Note: The common mistake students make is that any term is missed that gives the wrong answer.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets
