
Which of the following compounds in liquid state does not have hydrogen bonding.
A \[{{\text{H}}_{\text{2}}}\text{O}\]
B HF
C \[\text{N}{{\text{H}}_{\text{3}}}\]
D \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{6}}}\]
Answer
223.8k+ views
Hint A hydrogen atom that is bound to a highly electronegative atom and another highly electronegative atom that is close by interact with one another to form hydrogen bonds, which are a unique kind of attractive intermolecular interactions. This process is known as hydrogen bonding.
Complete Solution
Hydrogen is covalently joined to the more electronegative oxygen atom in water molecules. Therefore, the dipole-dipole interactions between the hydrogen atom of one water molecule and the oxygen atom of another water molecule are what cause hydrogen bonding to form in water molecules.
Here, the oxygen nucleus is in close proximity to the bond pair of electrons in the O-H bond (due to the large difference in the electronegativities of oxygen and hydrogen). As a result, the hydrogen atom acquires a partial positive charge while the oxygen atom acquires a partial negative charge. Now, the electrostatic attraction between the hydrogen atom of one water molecule and the oxygen atom of another water molecule allows for the formation of hydrogen bonds.
In light of this, hydrogen bonds represent a very distinct type of intermolecular attractive forces that only appear in compounds when hydrogen atoms are bound to strongly electronegative elements. Compared to standard dipole-dipole and dispersion forces, hydrogen bonds are generally much stronger. They are not as strong as actual covalent or ionic connections, though.
When hydrogen is joined to an atom that is both strongly electronegative and tiny in radius, a hydrogen bond is created.
As a result, electronegativity is a property of an atom's capacity to draw an electron pair. The Pauling scale is the most popular.
Hydrogen bonds are not present in liquid (benzene).
Benzene and Liquid Water Form Hydrogen Bonds.
Pi-hydrogen bonds can be created between liquid water and aromatic rings like benzene.
According to the study's findings, a water-water hydrogen connection is more powerful than a water-benzene bond.
Option D is the correct answer
Note
When a hydrogen atom is joined to an extremely electronegative atom in a molecule, it draws the shared pair of electrons more and the molecule's one end changes from slightly positive to slightly negative as a result. A weak link between the molecules is created when the positive end of one is drawn to the negative end of the other. The hydrogen bond is the name of this bond.
Complete Solution
Hydrogen is covalently joined to the more electronegative oxygen atom in water molecules. Therefore, the dipole-dipole interactions between the hydrogen atom of one water molecule and the oxygen atom of another water molecule are what cause hydrogen bonding to form in water molecules.
Here, the oxygen nucleus is in close proximity to the bond pair of electrons in the O-H bond (due to the large difference in the electronegativities of oxygen and hydrogen). As a result, the hydrogen atom acquires a partial positive charge while the oxygen atom acquires a partial negative charge. Now, the electrostatic attraction between the hydrogen atom of one water molecule and the oxygen atom of another water molecule allows for the formation of hydrogen bonds.
In light of this, hydrogen bonds represent a very distinct type of intermolecular attractive forces that only appear in compounds when hydrogen atoms are bound to strongly electronegative elements. Compared to standard dipole-dipole and dispersion forces, hydrogen bonds are generally much stronger. They are not as strong as actual covalent or ionic connections, though.
When hydrogen is joined to an atom that is both strongly electronegative and tiny in radius, a hydrogen bond is created.
As a result, electronegativity is a property of an atom's capacity to draw an electron pair. The Pauling scale is the most popular.
Hydrogen bonds are not present in liquid (benzene).
Benzene and Liquid Water Form Hydrogen Bonds.
Pi-hydrogen bonds can be created between liquid water and aromatic rings like benzene.
According to the study's findings, a water-water hydrogen connection is more powerful than a water-benzene bond.
Option D is the correct answer
Note
When a hydrogen atom is joined to an extremely electronegative atom in a molecule, it draws the shared pair of electrons more and the molecule's one end changes from slightly positive to slightly negative as a result. A weak link between the molecules is created when the positive end of one is drawn to the negative end of the other. The hydrogen bond is the name of this bond.
Recently Updated Pages
JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Isoelectronic Definition in Chemistry: Meaning, Examples & Trends

Ionisation Energy and Ionisation Potential Explained

Iodoform Reactions - Important Concepts and Tips for JEE

Introduction to Dimensions: Understanding the Basics

Instantaneous Velocity Explained: Formula, Examples & Graphs

Trending doubts
JEE Main 2026: City Intimation Slip Releasing Today, Application Form Closed, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Hybridisation in Chemistry – Concept, Types & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

Organic Chemistry Some Basic Principles And Techniques Class 11 Chemistry Chapter 8 CBSE Notes - 2025-26

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

