
Which is true about an inflatable beach ball as it is pushed under water?

A) When the ball is under water, the pressure on the ball is the same at all places on the surface of the ball.
B) The buoyant force on the ball increases the farther below the surface of the water as you push the ball.
C) The buoyant force on the ball increases until the entire ball is underwater.
D) The ball experiences pressure from the water only in the vertical direction.
Answer
232.8k+ views
Hint: Using the Archimedes Principle, this states that when an object is introduced in a liquid half or full, there is loss in the weight which is also known as apparent weight which is equal to the weight of the liquid displaced by the object introduced. The formula for Buoyant Force is:
\[F=\rho gh\]
where \[\rho \] is the density, \[d\] is the gravity and \[h\] is the height of the liquid.
Complete step by step solution:
Now as said before, the Archimedes principle is the buoyant force which is equal to the liquid weight displaced by the object when dipped in the liquid completely or half. Now in the diagram, the user dropped the balloon in the liquid partially and the user will experience a buoyant force which is equal to the weight of the water displaced meaning the force is not static but volatile and depends on the depth the object is introduced in the water and is entirely dependent upon the properties of the object or in this case the balloon.
If we check the options both (A) and (D) are wrong as pressure is not same and is applied on all direction and not vertically only and for option (B) and (C), the option (B) is correct but as it doesn't specify the application of buoyancy force till the ball is under which is mentioned in the option (C).
Therefore, the correct option is (C).
Note: The buoyancy force of the object (solid not hollow and density greater than water) is dynamic in nature until the ball is not dipped completely it will show resistance in form of force of buoyancy but the moment it is completely dipped in the water all the pressure from the object is gone and it sunk to the bottom.
\[F=\rho gh\]
where \[\rho \] is the density, \[d\] is the gravity and \[h\] is the height of the liquid.
Complete step by step solution:
Now as said before, the Archimedes principle is the buoyant force which is equal to the liquid weight displaced by the object when dipped in the liquid completely or half. Now in the diagram, the user dropped the balloon in the liquid partially and the user will experience a buoyant force which is equal to the weight of the water displaced meaning the force is not static but volatile and depends on the depth the object is introduced in the water and is entirely dependent upon the properties of the object or in this case the balloon.
If we check the options both (A) and (D) are wrong as pressure is not same and is applied on all direction and not vertically only and for option (B) and (C), the option (B) is correct but as it doesn't specify the application of buoyancy force till the ball is under which is mentioned in the option (C).
Therefore, the correct option is (C).
Note: The buoyancy force of the object (solid not hollow and density greater than water) is dynamic in nature until the ball is not dipped completely it will show resistance in form of force of buoyancy but the moment it is completely dipped in the water all the pressure from the object is gone and it sunk to the bottom.
Recently Updated Pages
Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

