
Volume of parallelepiped with sides in the form of position vector which is represented by$( - 12\hat i + \alpha \hat k)$,$(3\hat j - \hat k)$and $(2\hat i +\hat j - 15\hat k)$ is $(546)$.Then $(\alpha = ?)$ [IIT Screening $(1989)$; MNR $(1987)$].
A) 3
B) 2
C) - 3
D) - 2
Answer
162.9k+ views
Hint: Parallelepiped is a $(3)$-D structure consists of six symmetrical parallelograms. In this question we have to use the concept of the volume of parallelepiped which is found by using the scalar triple product of edges. In this question we take the scalar triple product of vectors formed by three concurrent edges.
Formula UsedScalar triple product of vectors $( = \vec a{\rm{.}}\left( {\vec b \times \vec c} \right))$
Scalar triple product can also be represented as $(\left[ {a\;b\;c\;} \right])$
Where $(\vec a,\vec b)$and $(\vec c)$are three concurrent edges of parallelepiped.
$(\vec a{\rm{.}}\left( {\vec b \times \vec c} \right) = \left| a \right|\left| {\left( {\vec b \times \vec c} \right)} \right|\cos \left( \theta \right))$
Where $(\theta )$is the angle between $(\vec a)$and $(\left( {\vec b \times \vec c} \right))$
$(\vec a.\left( {\vec b \times \vec c} \right) = ( {a_1}\hat i + {a_2}\hat j + {a_3}\hat k) .\begin{bmatrix}{\hat i} & {\hat j} & {\hat k} \\{{b_1}} & {{b_2}} & {{b_3}} \\{{c_1}} & {{c_2}} & {{c_3}} \end{bmatrix}$
$( {a_1}\hat i + {a_2}\hat j + {a_3}\hat k) \lbrace(b_2c_3-b_3c_2)\hat i-(b_1c_3-b_3c_1)\hat i+(b_1c_2-b_2c_1)\hat i\rbrace$
$( = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}} \right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}} \right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}} \right))$
Complete step by step solution:Given: vectors a, b and c are the three concurrent edges of parallelepiped.
Volume of parallelepiped is 546
Edges of parallelepiped is :
$(\vec a = - 12\hat i + \alpha \hat k)$
$(\vec b = 3\hat j - \hat k)$
$(\vec c = 2\hat i + \hat j - 15\hat k)$
Where,
$({a_1} = - 12,{a_2} = 0,{a_3} = \alpha )$
$({b_1} = 0,\;{b_2} = 3,{b_3} = - 1)$
$({c_1} = 2,{c_2} = 1,{c_3} = - 15)$
Volume of parallelepiped is given by :
$(\vec a.\left( {\vec b \times \vec c} \right) = ( {a_1}\hat i + {a_2}\hat j + {a_3}\hat k) .\begin{bmatrix}{\hat i} & {\hat j} & {\hat k} \\{{b_1}} & {{b_2}} & {{b_3}} \\{{c_1}} & {{c_2}} & {{c_3}} \end{bmatrix}$
$( {a_1}\hat i + {a_2}\hat j + {a_3}\hat k) \lbrace(b_2c_3-b_3c_2)\hat i-(b_1c_3-b_3c_1)\hat i+(b_1c_2-b_2c_1)\hat i\rbrace$
$( = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}} \right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}} \right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}} \right))$
$ = - 12(3 \times (- 15 ) - ( - 1) \times 1) + \alpha ( 0 \times 1 - 3 \times 2$
$- 12 ( - 45 + 1) + \alpha ( - 6 ) = 546$
$(528 - 6\alpha = 546)$
$(6\alpha = 528 - 546)$
$(6\alpha = - 18)$
$(\alpha = - 3)$
Option ‘C’ is correct
Note: Here question asked to find the value of unknown variable $\alpha$. IIn order to find the volume of parallelepiped must be known. Scalar triple product formula is used to find the volume of parallelepiped. Scalar triple product means product of three vectors i.e. dot product of one of the vectors with cross product of other two vectors.
Scalar triple products are represented as $(\left[ {a\;b\;c\;} \right])$.
The resultant scalar triple product is always scalar. Whenever we get the value of a scalar triple product as zero we can say that three vectors are coplanar.
Scalar triple product may be zero, negative and positive.
Formula UsedScalar triple product of vectors $( = \vec a{\rm{.}}\left( {\vec b \times \vec c} \right))$
Scalar triple product can also be represented as $(\left[ {a\;b\;c\;} \right])$
Where $(\vec a,\vec b)$and $(\vec c)$are three concurrent edges of parallelepiped.
$(\vec a{\rm{.}}\left( {\vec b \times \vec c} \right) = \left| a \right|\left| {\left( {\vec b \times \vec c} \right)} \right|\cos \left( \theta \right))$
Where $(\theta )$is the angle between $(\vec a)$and $(\left( {\vec b \times \vec c} \right))$
$(\vec a.\left( {\vec b \times \vec c} \right) = ( {a_1}\hat i + {a_2}\hat j + {a_3}\hat k) .\begin{bmatrix}{\hat i} & {\hat j} & {\hat k} \\{{b_1}} & {{b_2}} & {{b_3}} \\{{c_1}} & {{c_2}} & {{c_3}} \end{bmatrix}$
$( {a_1}\hat i + {a_2}\hat j + {a_3}\hat k) \lbrace(b_2c_3-b_3c_2)\hat i-(b_1c_3-b_3c_1)\hat i+(b_1c_2-b_2c_1)\hat i\rbrace$
$( = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}} \right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}} \right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}} \right))$
Complete step by step solution:Given: vectors a, b and c are the three concurrent edges of parallelepiped.
Volume of parallelepiped is 546
Edges of parallelepiped is :
$(\vec a = - 12\hat i + \alpha \hat k)$
$(\vec b = 3\hat j - \hat k)$
$(\vec c = 2\hat i + \hat j - 15\hat k)$
Where,
$({a_1} = - 12,{a_2} = 0,{a_3} = \alpha )$
$({b_1} = 0,\;{b_2} = 3,{b_3} = - 1)$
$({c_1} = 2,{c_2} = 1,{c_3} = - 15)$
Volume of parallelepiped is given by :
$(\vec a.\left( {\vec b \times \vec c} \right) = ( {a_1}\hat i + {a_2}\hat j + {a_3}\hat k) .\begin{bmatrix}{\hat i} & {\hat j} & {\hat k} \\{{b_1}} & {{b_2}} & {{b_3}} \\{{c_1}} & {{c_2}} & {{c_3}} \end{bmatrix}$
$( {a_1}\hat i + {a_2}\hat j + {a_3}\hat k) \lbrace(b_2c_3-b_3c_2)\hat i-(b_1c_3-b_3c_1)\hat i+(b_1c_2-b_2c_1)\hat i\rbrace$
$( = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}} \right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}} \right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}} \right))$
$ = - 12(3 \times (- 15 ) - ( - 1) \times 1) + \alpha ( 0 \times 1 - 3 \times 2$
$- 12 ( - 45 + 1) + \alpha ( - 6 ) = 546$
$(528 - 6\alpha = 546)$
$(6\alpha = 528 - 546)$
$(6\alpha = - 18)$
$(\alpha = - 3)$
Option ‘C’ is correct
Note: Here question asked to find the value of unknown variable $\alpha$. IIn order to find the volume of parallelepiped must be known. Scalar triple product formula is used to find the volume of parallelepiped. Scalar triple product means product of three vectors i.e. dot product of one of the vectors with cross product of other two vectors.
Scalar triple products are represented as $(\left[ {a\;b\;c\;} \right])$.
The resultant scalar triple product is always scalar. Whenever we get the value of a scalar triple product as zero we can say that three vectors are coplanar.
Scalar triple product may be zero, negative and positive.
Recently Updated Pages
Fluid Pressure - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Impulse Momentum Theorem Important Concepts and Tips for JEE

Graphical Methods of Vector Addition - Important Concepts for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NEET 2025 – Every New Update You Need to Know
