
Volume of parallelepiped with sides in the form of position vector which is represented by$( - 12\hat i + \alpha \hat k)$,$(3\hat j - \hat k)$and $(2\hat i +\hat j - 15\hat k)$ is $(546)$.Then $(\alpha = ?)$ [IIT Screening $(1989)$; MNR $(1987)$].
A) 3
B) 2
C) - 3
D) - 2
Answer
232.8k+ views
Hint: Parallelepiped is a $(3)$-D structure consists of six symmetrical parallelograms. In this question we have to use the concept of the volume of parallelepiped which is found by using the scalar triple product of edges. In this question we take the scalar triple product of vectors formed by three concurrent edges.
Formula UsedScalar triple product of vectors $( = \vec a{\rm{.}}\left( {\vec b \times \vec c} \right))$
Scalar triple product can also be represented as $(\left[ {a\;b\;c\;} \right])$
Where $(\vec a,\vec b)$and $(\vec c)$are three concurrent edges of parallelepiped.
$(\vec a{\rm{.}}\left( {\vec b \times \vec c} \right) = \left| a \right|\left| {\left( {\vec b \times \vec c} \right)} \right|\cos \left( \theta \right))$
Where $(\theta )$is the angle between $(\vec a)$and $(\left( {\vec b \times \vec c} \right))$
$(\vec a.\left( {\vec b \times \vec c} \right) = ( {a_1}\hat i + {a_2}\hat j + {a_3}\hat k) .\begin{bmatrix}{\hat i} & {\hat j} & {\hat k} \\{{b_1}} & {{b_2}} & {{b_3}} \\{{c_1}} & {{c_2}} & {{c_3}} \end{bmatrix}$
$( {a_1}\hat i + {a_2}\hat j + {a_3}\hat k) \lbrace(b_2c_3-b_3c_2)\hat i-(b_1c_3-b_3c_1)\hat i+(b_1c_2-b_2c_1)\hat i\rbrace$
$( = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}} \right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}} \right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}} \right))$
Complete step by step solution:Given: vectors a, b and c are the three concurrent edges of parallelepiped.
Volume of parallelepiped is 546
Edges of parallelepiped is :
$(\vec a = - 12\hat i + \alpha \hat k)$
$(\vec b = 3\hat j - \hat k)$
$(\vec c = 2\hat i + \hat j - 15\hat k)$
Where,
$({a_1} = - 12,{a_2} = 0,{a_3} = \alpha )$
$({b_1} = 0,\;{b_2} = 3,{b_3} = - 1)$
$({c_1} = 2,{c_2} = 1,{c_3} = - 15)$
Volume of parallelepiped is given by :
$(\vec a.\left( {\vec b \times \vec c} \right) = ( {a_1}\hat i + {a_2}\hat j + {a_3}\hat k) .\begin{bmatrix}{\hat i} & {\hat j} & {\hat k} \\{{b_1}} & {{b_2}} & {{b_3}} \\{{c_1}} & {{c_2}} & {{c_3}} \end{bmatrix}$
$( {a_1}\hat i + {a_2}\hat j + {a_3}\hat k) \lbrace(b_2c_3-b_3c_2)\hat i-(b_1c_3-b_3c_1)\hat i+(b_1c_2-b_2c_1)\hat i\rbrace$
$( = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}} \right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}} \right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}} \right))$
$ = - 12(3 \times (- 15 ) - ( - 1) \times 1) + \alpha ( 0 \times 1 - 3 \times 2$
$- 12 ( - 45 + 1) + \alpha ( - 6 ) = 546$
$(528 - 6\alpha = 546)$
$(6\alpha = 528 - 546)$
$(6\alpha = - 18)$
$(\alpha = - 3)$
Option ‘C’ is correct
Note: Here question asked to find the value of unknown variable $\alpha$. IIn order to find the volume of parallelepiped must be known. Scalar triple product formula is used to find the volume of parallelepiped. Scalar triple product means product of three vectors i.e. dot product of one of the vectors with cross product of other two vectors.
Scalar triple products are represented as $(\left[ {a\;b\;c\;} \right])$.
The resultant scalar triple product is always scalar. Whenever we get the value of a scalar triple product as zero we can say that three vectors are coplanar.
Scalar triple product may be zero, negative and positive.
Formula UsedScalar triple product of vectors $( = \vec a{\rm{.}}\left( {\vec b \times \vec c} \right))$
Scalar triple product can also be represented as $(\left[ {a\;b\;c\;} \right])$
Where $(\vec a,\vec b)$and $(\vec c)$are three concurrent edges of parallelepiped.
$(\vec a{\rm{.}}\left( {\vec b \times \vec c} \right) = \left| a \right|\left| {\left( {\vec b \times \vec c} \right)} \right|\cos \left( \theta \right))$
Where $(\theta )$is the angle between $(\vec a)$and $(\left( {\vec b \times \vec c} \right))$
$(\vec a.\left( {\vec b \times \vec c} \right) = ( {a_1}\hat i + {a_2}\hat j + {a_3}\hat k) .\begin{bmatrix}{\hat i} & {\hat j} & {\hat k} \\{{b_1}} & {{b_2}} & {{b_3}} \\{{c_1}} & {{c_2}} & {{c_3}} \end{bmatrix}$
$( {a_1}\hat i + {a_2}\hat j + {a_3}\hat k) \lbrace(b_2c_3-b_3c_2)\hat i-(b_1c_3-b_3c_1)\hat i+(b_1c_2-b_2c_1)\hat i\rbrace$
$( = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}} \right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}} \right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}} \right))$
Complete step by step solution:Given: vectors a, b and c are the three concurrent edges of parallelepiped.
Volume of parallelepiped is 546
Edges of parallelepiped is :
$(\vec a = - 12\hat i + \alpha \hat k)$
$(\vec b = 3\hat j - \hat k)$
$(\vec c = 2\hat i + \hat j - 15\hat k)$
Where,
$({a_1} = - 12,{a_2} = 0,{a_3} = \alpha )$
$({b_1} = 0,\;{b_2} = 3,{b_3} = - 1)$
$({c_1} = 2,{c_2} = 1,{c_3} = - 15)$
Volume of parallelepiped is given by :
$(\vec a.\left( {\vec b \times \vec c} \right) = ( {a_1}\hat i + {a_2}\hat j + {a_3}\hat k) .\begin{bmatrix}{\hat i} & {\hat j} & {\hat k} \\{{b_1}} & {{b_2}} & {{b_3}} \\{{c_1}} & {{c_2}} & {{c_3}} \end{bmatrix}$
$( {a_1}\hat i + {a_2}\hat j + {a_3}\hat k) \lbrace(b_2c_3-b_3c_2)\hat i-(b_1c_3-b_3c_1)\hat i+(b_1c_2-b_2c_1)\hat i\rbrace$
$( = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}} \right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}} \right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}} \right))$
$ = - 12(3 \times (- 15 ) - ( - 1) \times 1) + \alpha ( 0 \times 1 - 3 \times 2$
$- 12 ( - 45 + 1) + \alpha ( - 6 ) = 546$
$(528 - 6\alpha = 546)$
$(6\alpha = 528 - 546)$
$(6\alpha = - 18)$
$(\alpha = - 3)$
Option ‘C’ is correct
Note: Here question asked to find the value of unknown variable $\alpha$. IIn order to find the volume of parallelepiped must be known. Scalar triple product formula is used to find the volume of parallelepiped. Scalar triple product means product of three vectors i.e. dot product of one of the vectors with cross product of other two vectors.
Scalar triple products are represented as $(\left[ {a\;b\;c\;} \right])$.
The resultant scalar triple product is always scalar. Whenever we get the value of a scalar triple product as zero we can say that three vectors are coplanar.
Scalar triple product may be zero, negative and positive.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

