
Volume of parallelepiped with sides in the form of position vector which is represented by$( - 12\hat i + \alpha \hat k)$,$(3\hat j - \hat k)$and $(2\hat i +\hat j - 15\hat k)$ is $(546)$.Then $(\alpha = ?)$ [IIT Screening $(1989)$; MNR $(1987)$].
A) 3
B) 2
C) - 3
D) - 2
Answer
163.2k+ views
Hint: Parallelepiped is a $(3)$-D structure consists of six symmetrical parallelograms. In this question we have to use the concept of the volume of parallelepiped which is found by using the scalar triple product of edges. In this question we take the scalar triple product of vectors formed by three concurrent edges.
Formula UsedScalar triple product of vectors $( = \vec a{\rm{.}}\left( {\vec b \times \vec c} \right))$
Scalar triple product can also be represented as $(\left[ {a\;b\;c\;} \right])$
Where $(\vec a,\vec b)$and $(\vec c)$are three concurrent edges of parallelepiped.
$(\vec a{\rm{.}}\left( {\vec b \times \vec c} \right) = \left| a \right|\left| {\left( {\vec b \times \vec c} \right)} \right|\cos \left( \theta \right))$
Where $(\theta )$is the angle between $(\vec a)$and $(\left( {\vec b \times \vec c} \right))$
$(\vec a.\left( {\vec b \times \vec c} \right) = ( {a_1}\hat i + {a_2}\hat j + {a_3}\hat k) .\begin{bmatrix}{\hat i} & {\hat j} & {\hat k} \\{{b_1}} & {{b_2}} & {{b_3}} \\{{c_1}} & {{c_2}} & {{c_3}} \end{bmatrix}$
$( {a_1}\hat i + {a_2}\hat j + {a_3}\hat k) \lbrace(b_2c_3-b_3c_2)\hat i-(b_1c_3-b_3c_1)\hat i+(b_1c_2-b_2c_1)\hat i\rbrace$
$( = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}} \right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}} \right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}} \right))$
Complete step by step solution:Given: vectors a, b and c are the three concurrent edges of parallelepiped.
Volume of parallelepiped is 546
Edges of parallelepiped is :
$(\vec a = - 12\hat i + \alpha \hat k)$
$(\vec b = 3\hat j - \hat k)$
$(\vec c = 2\hat i + \hat j - 15\hat k)$
Where,
$({a_1} = - 12,{a_2} = 0,{a_3} = \alpha )$
$({b_1} = 0,\;{b_2} = 3,{b_3} = - 1)$
$({c_1} = 2,{c_2} = 1,{c_3} = - 15)$
Volume of parallelepiped is given by :
$(\vec a.\left( {\vec b \times \vec c} \right) = ( {a_1}\hat i + {a_2}\hat j + {a_3}\hat k) .\begin{bmatrix}{\hat i} & {\hat j} & {\hat k} \\{{b_1}} & {{b_2}} & {{b_3}} \\{{c_1}} & {{c_2}} & {{c_3}} \end{bmatrix}$
$( {a_1}\hat i + {a_2}\hat j + {a_3}\hat k) \lbrace(b_2c_3-b_3c_2)\hat i-(b_1c_3-b_3c_1)\hat i+(b_1c_2-b_2c_1)\hat i\rbrace$
$( = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}} \right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}} \right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}} \right))$
$ = - 12(3 \times (- 15 ) - ( - 1) \times 1) + \alpha ( 0 \times 1 - 3 \times 2$
$- 12 ( - 45 + 1) + \alpha ( - 6 ) = 546$
$(528 - 6\alpha = 546)$
$(6\alpha = 528 - 546)$
$(6\alpha = - 18)$
$(\alpha = - 3)$
Option ‘C’ is correct
Note: Here question asked to find the value of unknown variable $\alpha$. IIn order to find the volume of parallelepiped must be known. Scalar triple product formula is used to find the volume of parallelepiped. Scalar triple product means product of three vectors i.e. dot product of one of the vectors with cross product of other two vectors.
Scalar triple products are represented as $(\left[ {a\;b\;c\;} \right])$.
The resultant scalar triple product is always scalar. Whenever we get the value of a scalar triple product as zero we can say that three vectors are coplanar.
Scalar triple product may be zero, negative and positive.
Formula UsedScalar triple product of vectors $( = \vec a{\rm{.}}\left( {\vec b \times \vec c} \right))$
Scalar triple product can also be represented as $(\left[ {a\;b\;c\;} \right])$
Where $(\vec a,\vec b)$and $(\vec c)$are three concurrent edges of parallelepiped.
$(\vec a{\rm{.}}\left( {\vec b \times \vec c} \right) = \left| a \right|\left| {\left( {\vec b \times \vec c} \right)} \right|\cos \left( \theta \right))$
Where $(\theta )$is the angle between $(\vec a)$and $(\left( {\vec b \times \vec c} \right))$
$(\vec a.\left( {\vec b \times \vec c} \right) = ( {a_1}\hat i + {a_2}\hat j + {a_3}\hat k) .\begin{bmatrix}{\hat i} & {\hat j} & {\hat k} \\{{b_1}} & {{b_2}} & {{b_3}} \\{{c_1}} & {{c_2}} & {{c_3}} \end{bmatrix}$
$( {a_1}\hat i + {a_2}\hat j + {a_3}\hat k) \lbrace(b_2c_3-b_3c_2)\hat i-(b_1c_3-b_3c_1)\hat i+(b_1c_2-b_2c_1)\hat i\rbrace$
$( = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}} \right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}} \right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}} \right))$
Complete step by step solution:Given: vectors a, b and c are the three concurrent edges of parallelepiped.
Volume of parallelepiped is 546
Edges of parallelepiped is :
$(\vec a = - 12\hat i + \alpha \hat k)$
$(\vec b = 3\hat j - \hat k)$
$(\vec c = 2\hat i + \hat j - 15\hat k)$
Where,
$({a_1} = - 12,{a_2} = 0,{a_3} = \alpha )$
$({b_1} = 0,\;{b_2} = 3,{b_3} = - 1)$
$({c_1} = 2,{c_2} = 1,{c_3} = - 15)$
Volume of parallelepiped is given by :
$(\vec a.\left( {\vec b \times \vec c} \right) = ( {a_1}\hat i + {a_2}\hat j + {a_3}\hat k) .\begin{bmatrix}{\hat i} & {\hat j} & {\hat k} \\{{b_1}} & {{b_2}} & {{b_3}} \\{{c_1}} & {{c_2}} & {{c_3}} \end{bmatrix}$
$( {a_1}\hat i + {a_2}\hat j + {a_3}\hat k) \lbrace(b_2c_3-b_3c_2)\hat i-(b_1c_3-b_3c_1)\hat i+(b_1c_2-b_2c_1)\hat i\rbrace$
$( = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}} \right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}} \right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}} \right))$
$ = - 12(3 \times (- 15 ) - ( - 1) \times 1) + \alpha ( 0 \times 1 - 3 \times 2$
$- 12 ( - 45 + 1) + \alpha ( - 6 ) = 546$
$(528 - 6\alpha = 546)$
$(6\alpha = 528 - 546)$
$(6\alpha = - 18)$
$(\alpha = - 3)$
Option ‘C’ is correct
Note: Here question asked to find the value of unknown variable $\alpha$. IIn order to find the volume of parallelepiped must be known. Scalar triple product formula is used to find the volume of parallelepiped. Scalar triple product means product of three vectors i.e. dot product of one of the vectors with cross product of other two vectors.
Scalar triple products are represented as $(\left[ {a\;b\;c\;} \right])$.
The resultant scalar triple product is always scalar. Whenever we get the value of a scalar triple product as zero we can say that three vectors are coplanar.
Scalar triple product may be zero, negative and positive.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks
