
Verify whether the following are zeroes of the following polynomial, indicated against them.
$p\left( x \right) = 3x + 1,x = - \dfrac{1}{3}$
Answer
175.2k+ views
Hint: The zero of the polynomial is that number which when substituted in the polynomial gives 0 . Thus, to check whether the given number is the zero of the polynomial, substitute $x = - \dfrac{1}{3}$ in the given polynomial. If the result is 0, then the answer is yes otherwise not a 0 of the polynomial.
Complete step by step answer:
The maximum number of zeroes for a polynomial is determined by the highest degree of the polynomial.
The highest degree of a polynomial is the maximum power that the variable is raised to in the polynomial.
We are given that the polynomial is $p\left( x \right) = 3x + 1$.
In the given polynomial $p\left( x \right) = 3x + 1$, the highest power that the variable is raised to is 1. Therefore, the degree of the given polynomial is 1.
Therefore, the given polynomial has at most 1 zero.
We want to find out whether $x = - \dfrac{1}{3}$ is the zero of the given polynomial or not.
As we know, the zero of the polynomial is that number which when substituted in the polynomial gives the answer 0.
Now, we will substitute $x = - \dfrac{1}{3}$ in the polynomial $p\left( x \right) = 3x + 1$
On substituting, we get,
$
p\left( { - \dfrac{1}{3}} \right) = 3\left( { - \dfrac{1}{3}} \right) + 1 \\
p\left( { - \dfrac{1}{3}} \right) = - 1 + 1 \\
p\left( { - \dfrac{1}{3}} \right) = 0 \\
$
From the above result we can conclude that $x = - \dfrac{1}{3}$ is the zero of the polynomial.
Note: The maximum number of zeroes for a polynomial is determined by the highest degree of the polynomial. The highest degree of a polynomial is the maximum power that the variable is raised to in the polynomial. In linear polynomials, we can calculate the zero of the polynomial by putting it to 0 and then finding the value of, which will be the zero of the polynomial.
Complete step by step answer:
The maximum number of zeroes for a polynomial is determined by the highest degree of the polynomial.
The highest degree of a polynomial is the maximum power that the variable is raised to in the polynomial.
We are given that the polynomial is $p\left( x \right) = 3x + 1$.
In the given polynomial $p\left( x \right) = 3x + 1$, the highest power that the variable is raised to is 1. Therefore, the degree of the given polynomial is 1.
Therefore, the given polynomial has at most 1 zero.
We want to find out whether $x = - \dfrac{1}{3}$ is the zero of the given polynomial or not.
As we know, the zero of the polynomial is that number which when substituted in the polynomial gives the answer 0.
Now, we will substitute $x = - \dfrac{1}{3}$ in the polynomial $p\left( x \right) = 3x + 1$
On substituting, we get,
$
p\left( { - \dfrac{1}{3}} \right) = 3\left( { - \dfrac{1}{3}} \right) + 1 \\
p\left( { - \dfrac{1}{3}} \right) = - 1 + 1 \\
p\left( { - \dfrac{1}{3}} \right) = 0 \\
$
From the above result we can conclude that $x = - \dfrac{1}{3}$ is the zero of the polynomial.
Note: The maximum number of zeroes for a polynomial is determined by the highest degree of the polynomial. The highest degree of a polynomial is the maximum power that the variable is raised to in the polynomial. In linear polynomials, we can calculate the zero of the polynomial by putting it to 0 and then finding the value of, which will be the zero of the polynomial.
Recently Updated Pages
Sets, Relations, and Functions Mock Test 2025-26

Faraday's Law - Formula & Example

Molarity vs Molality: Definitions, Formulas & Key Differences

Preparation of Hydrogen Gas: Methods & Uses Explained

Polymers in Chemistry: Definition, Types, Examples & Uses

P Block Elements: Definition, Groups, Trends & Properties for JEE/NEET

Trending doubts
JEE Main Marks Vs Percentile Vs Rank 2025: Calculate Percentile Using Marks

JEE Mains 2025 Cutoff: Expected and Category-Wise Qualifying Marks for NITs, IIITs, and GFTIs

JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

NIT Cutoff Percentile for 2025

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

JEE Main Syllabus 2025 (Updated)

Other Pages
NCERT Solutions For Class 10 Maths Chapter 11 Areas Related to Circles - 2025-26

NCERT Solutions For Class 10 Maths Chapter 13 Statistics - 2025-26

NCERT Solutions For Class 10 Maths Chapter 12 Surface Area And Volume - 2025-26

NCERT Solutions For Class 10 Maths Chapter 14 Probability - 2025-26

NCERT Solutions For Class 10 Maths Chapter 15 Probability in Hindi - 2025-26

Complete List of Class 10 Maths Formulas (Chapterwise)
