
What is the value of the integration \[\int\limits_{\dfrac{{ - \pi }}{2}}^{\dfrac{\pi }{2}} {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}}} dx\] ?
A. \[\dfrac{\pi }{2}\]
B. \[\dfrac{\pi }{4}\]
C. \[\pi \]
D. \[\dfrac{{3\pi }}{2}\]
Answer
162.9k+ views
Hint: First, apply the integration property \[\int\limits_{ - a}^a {f\left( x \right)dx} = \int\limits_0^a {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]dx} \] and simplify the given integral. Then use the trigonometric identity of angle \[\sin\left( { - x} \right) = - \sin x\] and simplify the integral equation. After that, add both terms and solve the integral equation. In the end, integrate the given integral with respect to \[x\] and get the value of the given integral \[\int\limits_{\dfrac{{ - \pi }}{2}}^{\dfrac{\pi }{2}} {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}}} dx\].
Formula used:
\[\int\limits_{ - a}^a {f\left( x \right)dx} = \int\limits_0^a {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]dx} \]
\[\sin\left( { - x} \right) = - \sin x\]
\[\int\limits_a^b {dx} = \left[ x \right]_a^b\]
Complete step by step solution:
The given integral is \[\int\limits_{\dfrac{{ - \pi }}{2}}^{\dfrac{\pi }{2}} {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}}} dx\].
Let \[I\] be the value of the above integral.
Then,
\[I = \int\limits_{\dfrac{{ - \pi }}{2}}^{\dfrac{\pi }{2}} {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}}} dx\]
Now apply the integration property \[\int\limits_{ - a}^a {f\left( x \right)dx} = \int\limits_0^a {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]dx} \].
We get,
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}} + \dfrac{1}{{\left( {1 + {e^{\sin\left( { - x} \right)}}} \right)}}} \right]} dx\]
Now simplify the above integral using the trigonometric property \[\sin\left( { - x} \right) = - \sin x\].
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}} + \dfrac{1}{{\left( {1 + {e^{ - \sin x}}} \right)}}} \right]} dx\]
Rewrite the term \[{e^{ - \sin x}}\] using the property \[{a^{ - m}} = \dfrac{1}{{{a^m}}}\] .
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}} + \dfrac{1}{{\left( {1 + \dfrac{1}{{{e^{\sin x}}}}} \right)}}} \right]} dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}} + \dfrac{1}{{\left( {\dfrac{{{e^{\sin x}} + 1}}{{{e^{\sin x}}}}} \right)}}} \right]} dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}} + \dfrac{{{e^{\sin x}}}}{{\left( {{e^{\sin x}} + 1} \right)}}} \right]} dx\]
Since the denominator of both terms is same. So, add the terms present in the numerator of both terms.
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{{1 + {e^{\sin x}}}}{{\left( {1 + {e^{\sin x}}} \right)}}} \right]} dx\]
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ 1 \right]} dx\]
Now integrate the above integral with respect to the variable \[x\].
\[I = \left[ x \right]_0^{\dfrac{\pi }{2}}\]
Apply the limits on right-hand side.
\[I = \dfrac{\pi }{2} - 0\]
\[ \Rightarrow I = \dfrac{\pi }{2}\]
Thus, the value of the given integral is,
\[\int\limits_{\dfrac{{ - \pi }}{2}}^{\dfrac{\pi }{2}} {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}}} dx = \dfrac{\pi }{2}\]
Hence the correct option is A.
Note: Students often get confused about the trigonometric identities of the opposite angles. The opposite angle identities change the trigonometric functions of negative angles to the functions of positive angles.
The opposite angle identities of the basic trigonometric identities are:
\[\sin\left( { - x} \right) = - \sin x\]
\[\cos\left( { - x} \right) = \cos x\]
\[\tan\left( { - x} \right) = - \tan x\]
Formula used:
\[\int\limits_{ - a}^a {f\left( x \right)dx} = \int\limits_0^a {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]dx} \]
\[\sin\left( { - x} \right) = - \sin x\]
\[\int\limits_a^b {dx} = \left[ x \right]_a^b\]
Complete step by step solution:
The given integral is \[\int\limits_{\dfrac{{ - \pi }}{2}}^{\dfrac{\pi }{2}} {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}}} dx\].
Let \[I\] be the value of the above integral.
Then,
\[I = \int\limits_{\dfrac{{ - \pi }}{2}}^{\dfrac{\pi }{2}} {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}}} dx\]
Now apply the integration property \[\int\limits_{ - a}^a {f\left( x \right)dx} = \int\limits_0^a {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]dx} \].
We get,
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}} + \dfrac{1}{{\left( {1 + {e^{\sin\left( { - x} \right)}}} \right)}}} \right]} dx\]
Now simplify the above integral using the trigonometric property \[\sin\left( { - x} \right) = - \sin x\].
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}} + \dfrac{1}{{\left( {1 + {e^{ - \sin x}}} \right)}}} \right]} dx\]
Rewrite the term \[{e^{ - \sin x}}\] using the property \[{a^{ - m}} = \dfrac{1}{{{a^m}}}\] .
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}} + \dfrac{1}{{\left( {1 + \dfrac{1}{{{e^{\sin x}}}}} \right)}}} \right]} dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}} + \dfrac{1}{{\left( {\dfrac{{{e^{\sin x}} + 1}}{{{e^{\sin x}}}}} \right)}}} \right]} dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}} + \dfrac{{{e^{\sin x}}}}{{\left( {{e^{\sin x}} + 1} \right)}}} \right]} dx\]
Since the denominator of both terms is same. So, add the terms present in the numerator of both terms.
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{{1 + {e^{\sin x}}}}{{\left( {1 + {e^{\sin x}}} \right)}}} \right]} dx\]
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ 1 \right]} dx\]
Now integrate the above integral with respect to the variable \[x\].
\[I = \left[ x \right]_0^{\dfrac{\pi }{2}}\]
Apply the limits on right-hand side.
\[I = \dfrac{\pi }{2} - 0\]
\[ \Rightarrow I = \dfrac{\pi }{2}\]
Thus, the value of the given integral is,
\[\int\limits_{\dfrac{{ - \pi }}{2}}^{\dfrac{\pi }{2}} {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}}} dx = \dfrac{\pi }{2}\]
Hence the correct option is A.
Note: Students often get confused about the trigonometric identities of the opposite angles. The opposite angle identities change the trigonometric functions of negative angles to the functions of positive angles.
The opposite angle identities of the basic trigonometric identities are:
\[\sin\left( { - x} \right) = - \sin x\]
\[\cos\left( { - x} \right) = \cos x\]
\[\tan\left( { - x} \right) = - \tan x\]
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NEET 2025 – Every New Update You Need to Know

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

NEET Total Marks 2025

1 Billion in Rupees
