
What is the value of the integration \[\int\limits_{\dfrac{{ - \pi }}{2}}^{\dfrac{\pi }{2}} {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}}} dx\] ?
A. \[\dfrac{\pi }{2}\]
B. \[\dfrac{\pi }{4}\]
C. \[\pi \]
D. \[\dfrac{{3\pi }}{2}\]
Answer
217.5k+ views
Hint: First, apply the integration property \[\int\limits_{ - a}^a {f\left( x \right)dx} = \int\limits_0^a {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]dx} \] and simplify the given integral. Then use the trigonometric identity of angle \[\sin\left( { - x} \right) = - \sin x\] and simplify the integral equation. After that, add both terms and solve the integral equation. In the end, integrate the given integral with respect to \[x\] and get the value of the given integral \[\int\limits_{\dfrac{{ - \pi }}{2}}^{\dfrac{\pi }{2}} {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}}} dx\].
Formula used:
\[\int\limits_{ - a}^a {f\left( x \right)dx} = \int\limits_0^a {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]dx} \]
\[\sin\left( { - x} \right) = - \sin x\]
\[\int\limits_a^b {dx} = \left[ x \right]_a^b\]
Complete step by step solution:
The given integral is \[\int\limits_{\dfrac{{ - \pi }}{2}}^{\dfrac{\pi }{2}} {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}}} dx\].
Let \[I\] be the value of the above integral.
Then,
\[I = \int\limits_{\dfrac{{ - \pi }}{2}}^{\dfrac{\pi }{2}} {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}}} dx\]
Now apply the integration property \[\int\limits_{ - a}^a {f\left( x \right)dx} = \int\limits_0^a {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]dx} \].
We get,
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}} + \dfrac{1}{{\left( {1 + {e^{\sin\left( { - x} \right)}}} \right)}}} \right]} dx\]
Now simplify the above integral using the trigonometric property \[\sin\left( { - x} \right) = - \sin x\].
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}} + \dfrac{1}{{\left( {1 + {e^{ - \sin x}}} \right)}}} \right]} dx\]
Rewrite the term \[{e^{ - \sin x}}\] using the property \[{a^{ - m}} = \dfrac{1}{{{a^m}}}\] .
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}} + \dfrac{1}{{\left( {1 + \dfrac{1}{{{e^{\sin x}}}}} \right)}}} \right]} dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}} + \dfrac{1}{{\left( {\dfrac{{{e^{\sin x}} + 1}}{{{e^{\sin x}}}}} \right)}}} \right]} dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}} + \dfrac{{{e^{\sin x}}}}{{\left( {{e^{\sin x}} + 1} \right)}}} \right]} dx\]
Since the denominator of both terms is same. So, add the terms present in the numerator of both terms.
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{{1 + {e^{\sin x}}}}{{\left( {1 + {e^{\sin x}}} \right)}}} \right]} dx\]
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ 1 \right]} dx\]
Now integrate the above integral with respect to the variable \[x\].
\[I = \left[ x \right]_0^{\dfrac{\pi }{2}}\]
Apply the limits on right-hand side.
\[I = \dfrac{\pi }{2} - 0\]
\[ \Rightarrow I = \dfrac{\pi }{2}\]
Thus, the value of the given integral is,
\[\int\limits_{\dfrac{{ - \pi }}{2}}^{\dfrac{\pi }{2}} {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}}} dx = \dfrac{\pi }{2}\]
Hence the correct option is A.
Note: Students often get confused about the trigonometric identities of the opposite angles. The opposite angle identities change the trigonometric functions of negative angles to the functions of positive angles.
The opposite angle identities of the basic trigonometric identities are:
\[\sin\left( { - x} \right) = - \sin x\]
\[\cos\left( { - x} \right) = \cos x\]
\[\tan\left( { - x} \right) = - \tan x\]
Formula used:
\[\int\limits_{ - a}^a {f\left( x \right)dx} = \int\limits_0^a {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]dx} \]
\[\sin\left( { - x} \right) = - \sin x\]
\[\int\limits_a^b {dx} = \left[ x \right]_a^b\]
Complete step by step solution:
The given integral is \[\int\limits_{\dfrac{{ - \pi }}{2}}^{\dfrac{\pi }{2}} {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}}} dx\].
Let \[I\] be the value of the above integral.
Then,
\[I = \int\limits_{\dfrac{{ - \pi }}{2}}^{\dfrac{\pi }{2}} {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}}} dx\]
Now apply the integration property \[\int\limits_{ - a}^a {f\left( x \right)dx} = \int\limits_0^a {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]dx} \].
We get,
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}} + \dfrac{1}{{\left( {1 + {e^{\sin\left( { - x} \right)}}} \right)}}} \right]} dx\]
Now simplify the above integral using the trigonometric property \[\sin\left( { - x} \right) = - \sin x\].
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}} + \dfrac{1}{{\left( {1 + {e^{ - \sin x}}} \right)}}} \right]} dx\]
Rewrite the term \[{e^{ - \sin x}}\] using the property \[{a^{ - m}} = \dfrac{1}{{{a^m}}}\] .
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}} + \dfrac{1}{{\left( {1 + \dfrac{1}{{{e^{\sin x}}}}} \right)}}} \right]} dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}} + \dfrac{1}{{\left( {\dfrac{{{e^{\sin x}} + 1}}{{{e^{\sin x}}}}} \right)}}} \right]} dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}} + \dfrac{{{e^{\sin x}}}}{{\left( {{e^{\sin x}} + 1} \right)}}} \right]} dx\]
Since the denominator of both terms is same. So, add the terms present in the numerator of both terms.
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{{1 + {e^{\sin x}}}}{{\left( {1 + {e^{\sin x}}} \right)}}} \right]} dx\]
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ 1 \right]} dx\]
Now integrate the above integral with respect to the variable \[x\].
\[I = \left[ x \right]_0^{\dfrac{\pi }{2}}\]
Apply the limits on right-hand side.
\[I = \dfrac{\pi }{2} - 0\]
\[ \Rightarrow I = \dfrac{\pi }{2}\]
Thus, the value of the given integral is,
\[\int\limits_{\dfrac{{ - \pi }}{2}}^{\dfrac{\pi }{2}} {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}}} dx = \dfrac{\pi }{2}\]
Hence the correct option is A.
Note: Students often get confused about the trigonometric identities of the opposite angles. The opposite angle identities change the trigonometric functions of negative angles to the functions of positive angles.
The opposite angle identities of the basic trigonometric identities are:
\[\sin\left( { - x} \right) = - \sin x\]
\[\cos\left( { - x} \right) = \cos x\]
\[\tan\left( { - x} \right) = - \tan x\]
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

