
What is the value of the integration \[\int\limits_{\dfrac{{ - \pi }}{2}}^{\dfrac{\pi }{2}} {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}}} dx\] ?
A. \[\dfrac{\pi }{2}\]
B. \[\dfrac{\pi }{4}\]
C. \[\pi \]
D. \[\dfrac{{3\pi }}{2}\]
Answer
232.8k+ views
Hint: First, apply the integration property \[\int\limits_{ - a}^a {f\left( x \right)dx} = \int\limits_0^a {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]dx} \] and simplify the given integral. Then use the trigonometric identity of angle \[\sin\left( { - x} \right) = - \sin x\] and simplify the integral equation. After that, add both terms and solve the integral equation. In the end, integrate the given integral with respect to \[x\] and get the value of the given integral \[\int\limits_{\dfrac{{ - \pi }}{2}}^{\dfrac{\pi }{2}} {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}}} dx\].
Formula used:
\[\int\limits_{ - a}^a {f\left( x \right)dx} = \int\limits_0^a {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]dx} \]
\[\sin\left( { - x} \right) = - \sin x\]
\[\int\limits_a^b {dx} = \left[ x \right]_a^b\]
Complete step by step solution:
The given integral is \[\int\limits_{\dfrac{{ - \pi }}{2}}^{\dfrac{\pi }{2}} {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}}} dx\].
Let \[I\] be the value of the above integral.
Then,
\[I = \int\limits_{\dfrac{{ - \pi }}{2}}^{\dfrac{\pi }{2}} {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}}} dx\]
Now apply the integration property \[\int\limits_{ - a}^a {f\left( x \right)dx} = \int\limits_0^a {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]dx} \].
We get,
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}} + \dfrac{1}{{\left( {1 + {e^{\sin\left( { - x} \right)}}} \right)}}} \right]} dx\]
Now simplify the above integral using the trigonometric property \[\sin\left( { - x} \right) = - \sin x\].
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}} + \dfrac{1}{{\left( {1 + {e^{ - \sin x}}} \right)}}} \right]} dx\]
Rewrite the term \[{e^{ - \sin x}}\] using the property \[{a^{ - m}} = \dfrac{1}{{{a^m}}}\] .
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}} + \dfrac{1}{{\left( {1 + \dfrac{1}{{{e^{\sin x}}}}} \right)}}} \right]} dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}} + \dfrac{1}{{\left( {\dfrac{{{e^{\sin x}} + 1}}{{{e^{\sin x}}}}} \right)}}} \right]} dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}} + \dfrac{{{e^{\sin x}}}}{{\left( {{e^{\sin x}} + 1} \right)}}} \right]} dx\]
Since the denominator of both terms is same. So, add the terms present in the numerator of both terms.
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{{1 + {e^{\sin x}}}}{{\left( {1 + {e^{\sin x}}} \right)}}} \right]} dx\]
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ 1 \right]} dx\]
Now integrate the above integral with respect to the variable \[x\].
\[I = \left[ x \right]_0^{\dfrac{\pi }{2}}\]
Apply the limits on right-hand side.
\[I = \dfrac{\pi }{2} - 0\]
\[ \Rightarrow I = \dfrac{\pi }{2}\]
Thus, the value of the given integral is,
\[\int\limits_{\dfrac{{ - \pi }}{2}}^{\dfrac{\pi }{2}} {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}}} dx = \dfrac{\pi }{2}\]
Hence the correct option is A.
Note: Students often get confused about the trigonometric identities of the opposite angles. The opposite angle identities change the trigonometric functions of negative angles to the functions of positive angles.
The opposite angle identities of the basic trigonometric identities are:
\[\sin\left( { - x} \right) = - \sin x\]
\[\cos\left( { - x} \right) = \cos x\]
\[\tan\left( { - x} \right) = - \tan x\]
Formula used:
\[\int\limits_{ - a}^a {f\left( x \right)dx} = \int\limits_0^a {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]dx} \]
\[\sin\left( { - x} \right) = - \sin x\]
\[\int\limits_a^b {dx} = \left[ x \right]_a^b\]
Complete step by step solution:
The given integral is \[\int\limits_{\dfrac{{ - \pi }}{2}}^{\dfrac{\pi }{2}} {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}}} dx\].
Let \[I\] be the value of the above integral.
Then,
\[I = \int\limits_{\dfrac{{ - \pi }}{2}}^{\dfrac{\pi }{2}} {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}}} dx\]
Now apply the integration property \[\int\limits_{ - a}^a {f\left( x \right)dx} = \int\limits_0^a {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]dx} \].
We get,
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}} + \dfrac{1}{{\left( {1 + {e^{\sin\left( { - x} \right)}}} \right)}}} \right]} dx\]
Now simplify the above integral using the trigonometric property \[\sin\left( { - x} \right) = - \sin x\].
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}} + \dfrac{1}{{\left( {1 + {e^{ - \sin x}}} \right)}}} \right]} dx\]
Rewrite the term \[{e^{ - \sin x}}\] using the property \[{a^{ - m}} = \dfrac{1}{{{a^m}}}\] .
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}} + \dfrac{1}{{\left( {1 + \dfrac{1}{{{e^{\sin x}}}}} \right)}}} \right]} dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}} + \dfrac{1}{{\left( {\dfrac{{{e^{\sin x}} + 1}}{{{e^{\sin x}}}}} \right)}}} \right]} dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}} + \dfrac{{{e^{\sin x}}}}{{\left( {{e^{\sin x}} + 1} \right)}}} \right]} dx\]
Since the denominator of both terms is same. So, add the terms present in the numerator of both terms.
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{{1 + {e^{\sin x}}}}{{\left( {1 + {e^{\sin x}}} \right)}}} \right]} dx\]
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ 1 \right]} dx\]
Now integrate the above integral with respect to the variable \[x\].
\[I = \left[ x \right]_0^{\dfrac{\pi }{2}}\]
Apply the limits on right-hand side.
\[I = \dfrac{\pi }{2} - 0\]
\[ \Rightarrow I = \dfrac{\pi }{2}\]
Thus, the value of the given integral is,
\[\int\limits_{\dfrac{{ - \pi }}{2}}^{\dfrac{\pi }{2}} {\dfrac{1}{{\left( {1 + {e^{\sin x}}} \right)}}} dx = \dfrac{\pi }{2}\]
Hence the correct option is A.
Note: Students often get confused about the trigonometric identities of the opposite angles. The opposite angle identities change the trigonometric functions of negative angles to the functions of positive angles.
The opposite angle identities of the basic trigonometric identities are:
\[\sin\left( { - x} \right) = - \sin x\]
\[\cos\left( { - x} \right) = \cos x\]
\[\tan\left( { - x} \right) = - \tan x\]
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

