
What is the value of the integration \[\int\limits_0^{2\pi } {\left[ {\dfrac{{dx}}{{\left( {{e^{\sin x}} + 1} \right)}}} \right]} \] ?
A. \[\pi \]
B. 0
C. \[2\pi \]
D. \[\dfrac{\pi }{2}\]
Answer
206.7k+ views
Hint: First, apply the integration property \[\int\limits_0^a {f\left( x \right)dx} = \int\limits_0^a {f\left( {a - x} \right)dx} \] and simplify the given integral. Then use the trigonometric identity of angle \[\sin\left( {2\pi - x} \right) = - \sin x\] and simplify the equation. After that, add both integrals and solve the equation. In the end, integrate the given integral with respect to \[x\] and get the required answer.
Formula used:
\[\int\limits_0^a {f\left( x \right)dx} = \int\limits_0^a {f\left( {a - x} \right)dx} \]
\[\sin\left( {2\pi - x} \right) = - \sin x\]
\[\int\limits_a^b {dx} = \left[ x \right]_a^b\]
Complete step by step solution:
The given integral is \[\int\limits_0^{2\pi } {\left[ {\dfrac{{dx}}{{\left( {{e^{\sin x}} + 1} \right)}}} \right]} \].
Let \[I\] be the value of the given integral.
Then,
\[I = \int\limits_0^{2\pi } {\left[ {\dfrac{{dx}}{{\left( {{e^{\sin x}} + 1} \right)}}} \right]} \] \[.....\left( 1 \right)\]
Now apply the integration property \[\int\limits_0^a {f\left( x \right)dx} = \int\limits_0^a {f\left( {a - x} \right)dx} \].
We get,
\[I = \int\limits_0^{2\pi } {\left[ {\dfrac{{dx}}{{\left( {{e^{\sin\left( {2\pi - x} \right)}} + 1} \right)}}} \right]} \]
Now simplify the above integral using the trigonometric property \[\sin\left( {2\pi - x} \right) = - \sin x\].
\[I = \int\limits_0^{2\pi } {\left[ {\dfrac{{dx}}{{\left( {{e^{ - \sin x}} + 1} \right)}}} \right]} \]
Rewrite the term \[{e^{ - \sin x}}\] using the property \[{a^{ - m}} = \dfrac{1}{{{a^m}}}\].
\[I = \int\limits_0^{2\pi } {\left[ {\dfrac{{dx}}{{\left( {\dfrac{1}{{{e^{\sin x}}}} + 1} \right)}}} \right]} \]
\[ \Rightarrow I = \int\limits_0^{2\pi } {\left[ {\dfrac{{dx}}{{\left( {\dfrac{{1 + {e^{\sin x}}}}{{{e^{\sin x}}}}} \right)}}} \right]} \]
\[ \Rightarrow I = \int\limits_0^{2\pi } {\left[ {\dfrac{{{e^{\sin x}}dx}}{{1 + {e^{\sin x}}}}} \right]} \] \[.....\left( 2 \right)\]
Now add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
We get,
\[2I = \int\limits_0^{2\pi } {\left[ {\dfrac{{dx}}{{\left( {{e^{\sin x}} + 1} \right)}}} \right]} + \int\limits_0^{2\pi } {\left[ {\dfrac{{{e^{\sin x}}dx}}{{1 + {e^{\sin x}}}}} \right]} \]
Since the denominator and the limits of the both integral are same. So, add the numerator of both terms.
\[2I = \int\limits_0^{2\pi } {\left[ {\dfrac{{1 + {e^{\sin x}}}}{{1 + {e^{\sin x}}}}} \right]} dx\]
\[2I = \int\limits_0^{2\pi } {\left[ 1 \right]} dx\]
Now integrate the above integral with respect to \[x\].
\[2I = \left[ x \right]_0^{2\pi }\]
Apply the limits on right-hand side.
\[2I = 2\pi - 0\]
\[ \Rightarrow 2I = 2\pi \]
Divide both sides by 2.
\[I = \pi \]
Therefore, the value of the given integral is,
\[\int\limits_0^{2\pi } {\left[ {\dfrac{{dx}}{{\left( {{e^{\sin x}} + 1} \right)}}} \right]} = \pi \]
Hence the correct option is A.
Note: Students often get confused about the trigonometric identity of \[\sin\left( {2\pi - x} \right)\] that whether \[\sin x\] or \[ - \sin x\]. But the correct identity is \[\sin\left( {2\pi - x} \right) = - \sin x\].
This identity is derived from the trigonometric property \[\sin \left( {A - B} \right) = \sin A \cos B - \cos A \sin B\].
Formula used:
\[\int\limits_0^a {f\left( x \right)dx} = \int\limits_0^a {f\left( {a - x} \right)dx} \]
\[\sin\left( {2\pi - x} \right) = - \sin x\]
\[\int\limits_a^b {dx} = \left[ x \right]_a^b\]
Complete step by step solution:
The given integral is \[\int\limits_0^{2\pi } {\left[ {\dfrac{{dx}}{{\left( {{e^{\sin x}} + 1} \right)}}} \right]} \].
Let \[I\] be the value of the given integral.
Then,
\[I = \int\limits_0^{2\pi } {\left[ {\dfrac{{dx}}{{\left( {{e^{\sin x}} + 1} \right)}}} \right]} \] \[.....\left( 1 \right)\]
Now apply the integration property \[\int\limits_0^a {f\left( x \right)dx} = \int\limits_0^a {f\left( {a - x} \right)dx} \].
We get,
\[I = \int\limits_0^{2\pi } {\left[ {\dfrac{{dx}}{{\left( {{e^{\sin\left( {2\pi - x} \right)}} + 1} \right)}}} \right]} \]
Now simplify the above integral using the trigonometric property \[\sin\left( {2\pi - x} \right) = - \sin x\].
\[I = \int\limits_0^{2\pi } {\left[ {\dfrac{{dx}}{{\left( {{e^{ - \sin x}} + 1} \right)}}} \right]} \]
Rewrite the term \[{e^{ - \sin x}}\] using the property \[{a^{ - m}} = \dfrac{1}{{{a^m}}}\].
\[I = \int\limits_0^{2\pi } {\left[ {\dfrac{{dx}}{{\left( {\dfrac{1}{{{e^{\sin x}}}} + 1} \right)}}} \right]} \]
\[ \Rightarrow I = \int\limits_0^{2\pi } {\left[ {\dfrac{{dx}}{{\left( {\dfrac{{1 + {e^{\sin x}}}}{{{e^{\sin x}}}}} \right)}}} \right]} \]
\[ \Rightarrow I = \int\limits_0^{2\pi } {\left[ {\dfrac{{{e^{\sin x}}dx}}{{1 + {e^{\sin x}}}}} \right]} \] \[.....\left( 2 \right)\]
Now add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
We get,
\[2I = \int\limits_0^{2\pi } {\left[ {\dfrac{{dx}}{{\left( {{e^{\sin x}} + 1} \right)}}} \right]} + \int\limits_0^{2\pi } {\left[ {\dfrac{{{e^{\sin x}}dx}}{{1 + {e^{\sin x}}}}} \right]} \]
Since the denominator and the limits of the both integral are same. So, add the numerator of both terms.
\[2I = \int\limits_0^{2\pi } {\left[ {\dfrac{{1 + {e^{\sin x}}}}{{1 + {e^{\sin x}}}}} \right]} dx\]
\[2I = \int\limits_0^{2\pi } {\left[ 1 \right]} dx\]
Now integrate the above integral with respect to \[x\].
\[2I = \left[ x \right]_0^{2\pi }\]
Apply the limits on right-hand side.
\[2I = 2\pi - 0\]
\[ \Rightarrow 2I = 2\pi \]
Divide both sides by 2.
\[I = \pi \]
Therefore, the value of the given integral is,
\[\int\limits_0^{2\pi } {\left[ {\dfrac{{dx}}{{\left( {{e^{\sin x}} + 1} \right)}}} \right]} = \pi \]
Hence the correct option is A.
Note: Students often get confused about the trigonometric identity of \[\sin\left( {2\pi - x} \right)\] that whether \[\sin x\] or \[ - \sin x\]. But the correct identity is \[\sin\left( {2\pi - x} \right) = - \sin x\].
This identity is derived from the trigonometric property \[\sin \left( {A - B} \right) = \sin A \cos B - \cos A \sin B\].
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026- Edit Form Details, Dates and Link

Atomic Structure: Definition, Models, and Examples

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Angle of Deviation in a Prism – Formula, Diagram & Applications

Hybridisation in Chemistry – Concept, Types & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Collision: Meaning, Types & Examples in Physics

Equation of Trajectory in Projectile Motion: Derivation & Proof

Average and RMS Value in Physics: Formula, Comparison & Application

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

How to Convert a Galvanometer into an Ammeter or Voltmeter

