
What is the value of the integral \[\int\limits_{ - 3}^3 {\dfrac{{{x^2}\sin 2x}}{{{x^2} + 1}}dx} \]?
A. 0
B. 1
C. \[2{\log _e}3\]
D. None of these
Answer
232.8k+ views
Hint: Here, a definite integral is given. First, check whether the function present in the given integral is odd or an even function. If the function is odd, then apply the property of the definite integral for the odd function. If the function is even, then apply the property of the definite integral for the even function and solve the integral to get the required answer.
Formula Used:\[\int\limits_{ - a}^a {f\left( x \right) dx} = 0\], if the function \[f\left( x \right)\] is an odd function. Means, \[f\left( { - x} \right) = - f\left( x \right)\]
\[\int\limits_{ - a}^a {f\left( x \right) dx} = 2\int\limits_0^a {f\left( x \right) dx} \], if the function \[f\left( x \right)\] is an even function. Means, \[f\left( { - x} \right) = f\left( x \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_{ - 3}^3 {\dfrac{{{x^2}\sin 2x}}{{{x^2} + 1}}dx} \].
Let consider,
\[f\left( x \right) = \dfrac{{{x^2}\sin 2x}}{{{x^2} + 1}}\]
Now let’s calculate the value of \[f\left( { - x} \right)\].
\[f\left( { - x} \right) = \dfrac{{{{\left( { - x} \right)}^2}\sin \left( { - 2x} \right)}}{{{{\left( { - x} \right)}^2} + 1}}\]
\[ \Rightarrow f\left( { - x} \right) = \dfrac{{{x^2}\left( { - \sin 2x} \right)}}{{{x^2} + 1}}\]
\[ \Rightarrow f\left( { - x} \right) = - \dfrac{{{x^2}\sin 2x}}{{{x^2} + 1}}\]
\[ \Rightarrow f\left( { - x} \right) = - f\left( x \right)\]
Therefore, \[f\left( x \right) = \dfrac{{{x^2}\sin 2x}}{{{x^2} + 1}}\] is an odd function.
So, apply the integration formula \[\int\limits_{ - a}^a {f\left( x \right) dx} = 0\], if the function \[f\left( x \right)\] is an odd function.
We get,
\[\int\limits_{ - 3}^3 {\dfrac{{{x^2}\sin 2x}}{{{x^2} + 1}}dx} = 0\]
Option ‘A’ is correct
Note:Sometimes students get confused and try to solve the integral by using the trigonometric identities. We can solve this integral by using the methods of indefinite integral. But the answer will be wrong.
So, to calculate the correct answer in the definite integral, first check whether the given trigonometric function is odd or even.
Formula Used:\[\int\limits_{ - a}^a {f\left( x \right) dx} = 0\], if the function \[f\left( x \right)\] is an odd function. Means, \[f\left( { - x} \right) = - f\left( x \right)\]
\[\int\limits_{ - a}^a {f\left( x \right) dx} = 2\int\limits_0^a {f\left( x \right) dx} \], if the function \[f\left( x \right)\] is an even function. Means, \[f\left( { - x} \right) = f\left( x \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_{ - 3}^3 {\dfrac{{{x^2}\sin 2x}}{{{x^2} + 1}}dx} \].
Let consider,
\[f\left( x \right) = \dfrac{{{x^2}\sin 2x}}{{{x^2} + 1}}\]
Now let’s calculate the value of \[f\left( { - x} \right)\].
\[f\left( { - x} \right) = \dfrac{{{{\left( { - x} \right)}^2}\sin \left( { - 2x} \right)}}{{{{\left( { - x} \right)}^2} + 1}}\]
\[ \Rightarrow f\left( { - x} \right) = \dfrac{{{x^2}\left( { - \sin 2x} \right)}}{{{x^2} + 1}}\]
\[ \Rightarrow f\left( { - x} \right) = - \dfrac{{{x^2}\sin 2x}}{{{x^2} + 1}}\]
\[ \Rightarrow f\left( { - x} \right) = - f\left( x \right)\]
Therefore, \[f\left( x \right) = \dfrac{{{x^2}\sin 2x}}{{{x^2} + 1}}\] is an odd function.
So, apply the integration formula \[\int\limits_{ - a}^a {f\left( x \right) dx} = 0\], if the function \[f\left( x \right)\] is an odd function.
We get,
\[\int\limits_{ - 3}^3 {\dfrac{{{x^2}\sin 2x}}{{{x^2} + 1}}dx} = 0\]
Option ‘A’ is correct
Note:Sometimes students get confused and try to solve the integral by using the trigonometric identities. We can solve this integral by using the methods of indefinite integral. But the answer will be wrong.
So, to calculate the correct answer in the definite integral, first check whether the given trigonometric function is odd or even.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

