
What is the value of the integral \[\int\limits_{ - 1}^1 {\dfrac{{\sin x - {x^2}}}{{3 - \left| x \right|}}} dx\]?
A. 0
B. \[2\int\limits_0^1 {\dfrac{{\sin x}}{{3 - \left| x \right|}}} dx\]
C. \[2\int\limits_0^1 {\dfrac{{ - {x^2}}}{{3 - \left| x \right|}}} dx\]
D. \[2\int\limits_0^1 {\dfrac{{\sin x - {x^2}}}{{3 - \left| x \right|}}} dx\]
Answer
216k+ views
Hint: Here, a definite integral is given. First, simplify the given integral by separating the terms. Then, check whether the separated functions are even or odd. If the function is odd, then the value of that integral is 0. If the function is even, then solve the integral by applying the integration rule \[\int\limits_{ - a}^a {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\]. In the end, simplify the integral to get the required answer.
Formula Used:\[\int\limits_{ - a}^a {f\left( x \right) dx} = 0\], if the function \[f\left( x \right)\] is an odd function. Means, \[f\left( { - x} \right) = - f\left( x \right)\]
\[\int\limits_{ - a}^a {f\left( x \right) dx} = 2\int\limits_0^a {f\left( x \right) dx} \], if the function \[f\left( x \right)\] is an even function. Means, \[f\left( { - x} \right) = f\left( x \right)\]
\[\sin \left( { - x} \right) = - \sin x\]
Complete step by step solution:The given integral is \[\int\limits_{ - 1}^1 {\dfrac{{\sin x - {x^2}}}{{3 - \left| x \right|}}} dx\].
Let consider,
\[I = \int\limits_{ - 1}^1 {\dfrac{{\sin x - {x^2}}}{{3 - \left| x \right|}}} dx\]
Split the integral function into two terms.
\[I = \int\limits_{ - 1}^1 {\dfrac{{\sin x}}{{3 - \left| x \right|}}} dx - \int\limits_{ - 1}^1 {\dfrac{{{x^2}}}{{3 - \left| x \right|}}} dx\]
Now let’s check whether the functions are odd or even.
Let consider, \[f\left( x \right) = \dfrac{{\sin x}}{{3 - \left| x \right|}}\]
Then, \[f\left( { - x} \right) = \dfrac{{\sin \left( { - x} \right)}}{{3 - \left| { - x} \right|}}\]
\[ \Rightarrow f\left( { - x} \right) = \dfrac{{ - \sin x}}{{3 - \left| x \right|}}\]
\[ \Rightarrow f\left( { - x} \right) = - f\left( x \right)\]
Therefore, \[f\left( x \right) = \dfrac{{\sin x}}{{3 - \left| x \right|}}\] is an odd function.
Also, let consider \[g\left( x \right) = \dfrac{{{x^2}}}{{3 - \left| x \right|}}\]
Then, \[g\left( { - x} \right) = \dfrac{{{{\left( { - x} \right)}^2}}}{{3 - \left| { - x} \right|}}\]
\[g\left( { - x} \right) = \dfrac{{{x^2}}}{{3 - \left| x \right|}}\]
\[ \Rightarrow g\left( { - x} \right) = g\left( x \right)\]
Therefore, \[g\left( x \right) = \dfrac{{{x^2}}}{{3 - \left| x \right|}}\] is an even function.
Now apply the properties of the definite integral \[\int\limits_{ - a}^a {f\left( x \right) dx} = 0\], if the function \[f\left( x \right)\] is an odd function and \[\int\limits_{ - a}^a {f\left( x \right) dx} = 2\int\limits_0^a {f\left( x \right) dx} \], if the function \[f\left( x \right)\] is an even function.
We get,
\[I = 0 - 2\int\limits_0^1 {\dfrac{{{x^2}}}{{3 - \left| x \right|}}} dx\]
\[ \Rightarrow I = - 2\int\limits_0^1 {\dfrac{{{x^2}}}{{3 - \left| x \right|}}} dx\]
\[ \Rightarrow I = 2\int\limits_0^1 {\dfrac{{ - {x^2}}}{{3 - \left| x \right|}}} dx\]
Therefore, \[\int\limits_{ - 1}^1 {\dfrac{{\sin x - {x^2}}}{{3 - \left| x \right|}}} dx = 2\int\limits_0^1 {\dfrac{{ - {x^2}}}{{3 - \left| x \right|}}} dx\].
Option ‘C’ is correct
Note: Sometimes students get confused and write \[\sin \left( { - x} \right) = \sin x\]. Which is a wrong formula. Because of that, \[\dfrac{{\sin x}}{{3 - \left| x \right|}}\] will be considered as an even function and they get a different solution. The correct formula is \[\sin \left( { - x} \right) = - \sin x\].
Formula Used:\[\int\limits_{ - a}^a {f\left( x \right) dx} = 0\], if the function \[f\left( x \right)\] is an odd function. Means, \[f\left( { - x} \right) = - f\left( x \right)\]
\[\int\limits_{ - a}^a {f\left( x \right) dx} = 2\int\limits_0^a {f\left( x \right) dx} \], if the function \[f\left( x \right)\] is an even function. Means, \[f\left( { - x} \right) = f\left( x \right)\]
\[\sin \left( { - x} \right) = - \sin x\]
Complete step by step solution:The given integral is \[\int\limits_{ - 1}^1 {\dfrac{{\sin x - {x^2}}}{{3 - \left| x \right|}}} dx\].
Let consider,
\[I = \int\limits_{ - 1}^1 {\dfrac{{\sin x - {x^2}}}{{3 - \left| x \right|}}} dx\]
Split the integral function into two terms.
\[I = \int\limits_{ - 1}^1 {\dfrac{{\sin x}}{{3 - \left| x \right|}}} dx - \int\limits_{ - 1}^1 {\dfrac{{{x^2}}}{{3 - \left| x \right|}}} dx\]
Now let’s check whether the functions are odd or even.
Let consider, \[f\left( x \right) = \dfrac{{\sin x}}{{3 - \left| x \right|}}\]
Then, \[f\left( { - x} \right) = \dfrac{{\sin \left( { - x} \right)}}{{3 - \left| { - x} \right|}}\]
\[ \Rightarrow f\left( { - x} \right) = \dfrac{{ - \sin x}}{{3 - \left| x \right|}}\]
\[ \Rightarrow f\left( { - x} \right) = - f\left( x \right)\]
Therefore, \[f\left( x \right) = \dfrac{{\sin x}}{{3 - \left| x \right|}}\] is an odd function.
Also, let consider \[g\left( x \right) = \dfrac{{{x^2}}}{{3 - \left| x \right|}}\]
Then, \[g\left( { - x} \right) = \dfrac{{{{\left( { - x} \right)}^2}}}{{3 - \left| { - x} \right|}}\]
\[g\left( { - x} \right) = \dfrac{{{x^2}}}{{3 - \left| x \right|}}\]
\[ \Rightarrow g\left( { - x} \right) = g\left( x \right)\]
Therefore, \[g\left( x \right) = \dfrac{{{x^2}}}{{3 - \left| x \right|}}\] is an even function.
Now apply the properties of the definite integral \[\int\limits_{ - a}^a {f\left( x \right) dx} = 0\], if the function \[f\left( x \right)\] is an odd function and \[\int\limits_{ - a}^a {f\left( x \right) dx} = 2\int\limits_0^a {f\left( x \right) dx} \], if the function \[f\left( x \right)\] is an even function.
We get,
\[I = 0 - 2\int\limits_0^1 {\dfrac{{{x^2}}}{{3 - \left| x \right|}}} dx\]
\[ \Rightarrow I = - 2\int\limits_0^1 {\dfrac{{{x^2}}}{{3 - \left| x \right|}}} dx\]
\[ \Rightarrow I = 2\int\limits_0^1 {\dfrac{{ - {x^2}}}{{3 - \left| x \right|}}} dx\]
Therefore, \[\int\limits_{ - 1}^1 {\dfrac{{\sin x - {x^2}}}{{3 - \left| x \right|}}} dx = 2\int\limits_0^1 {\dfrac{{ - {x^2}}}{{3 - \left| x \right|}}} dx\].
Option ‘C’ is correct
Note: Sometimes students get confused and write \[\sin \left( { - x} \right) = \sin x\]. Which is a wrong formula. Because of that, \[\dfrac{{\sin x}}{{3 - \left| x \right|}}\] will be considered as an even function and they get a different solution. The correct formula is \[\sin \left( { - x} \right) = - \sin x\].
Recently Updated Pages
Alpha, Beta, and Gamma Decay Explained

Alpha Particle Scattering and Rutherford Model Explained

Angular Momentum of a Rotating Body: Definition & Formula

Apparent Frequency Explained: Formula, Uses & Examples

Applications of Echo in Daily Life and Science

Average and RMS Value Explained: Formulas & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

