
What is the value of the expression \[{}^n{C_r} + {}^{n - 1}{C_r} + \cdots + {}^r{C_r}\]?
A. \[{}^{n + 1}{C_r}\]
B. \[{}^{n + 1}{C_{r + 1}}\]
C. \[{}^{n + 2}{C_r}\]
D. \[{2^n}\]
Answer
164.1k+ views
Hint: The given expression is the sum of combination. First we will rewrite the given expression. Then we will apply the formula of sum of two combinations in first two terms. In the same we will add all terms of the given expression to get the required answer.
Formula Used:The sum of two combination terms
\[{}^n{C_r} + {}^n{C_{r - 1}} = {}^{n + 1}{C_r}\]
Complete step by step solution:The given expression is \[{}^n{C_r} + {}^{n - 1}{C_r} + \cdots + {}^r{C_r}\]
Rewrite the given expression:
\[ = {}^r{C_r} + {}^{r + 1}{C_r} + {}^{r + 2}{C_r} + \cdots + {}^{n - 1}{C_r} + {}^n{C_r}\] …..(i)
We know that, \[{}^n{C_n} = 1\].
Therefore \[{}^r{C_r} = {}^{r + 1}{C_{r + 1}}\]
Putting \[{}^r{C_r} = {}^{r + 1}{C_{r + 1}}\] in (i)
\[ = \left( {{}^{r + 1}{C_{r + 1}} + {}^{r + 1}{C_r}} \right) + {}^{r + 2}{C_r} + \cdots + {}^{n - 1}{C_r} + {}^n{C_r}\]
Now applying the formula \[{}^n{C_r} + {}^n{C_{r - 1}} = {}^{n + 1}{C_r}\] in first two terms
\[ = \left( {{}^{r + 2}{C_{r + 1}}} \right) + {}^{r + 2}{C_r} + \cdots + {}^{n - 1}{C_r} + {}^n{C_r}\]
Again applying the formula \[{}^n{C_r} + {}^n{C_{r - 1}} = {}^{n + 1}{C_r}\] in first two terms
\[ = {}^{r + 2}{C_{r + 2}} + \cdots + {}^{n - 1}{C_r} + {}^n{C_r}\]
Similar way
\[ = {}^{n - 1}{C_{r + 1}} + {}^{n - 1}{C_r} + {}^n{C_r}\]
\[ = {}^n{C_{r + 1}} + {}^n{C_r}\]
\[ = {}^{n + 1}{C_{r + 1}}\]
Option ‘B’ is correct
Additional Information:A combination is a combination when r things are chosen from n things and the order of section does not matter.
The combination is represented by \[{}^n{C_r}\].
Note: Students often apply a wrong formula to solve it. They applied \[{}^n{C_r} + {}^n{C_{r - 1}} = {}^n{C_{r + 1}}\] which is an incorrect formula. The correct formula is \[{}^n{C_r} + {}^n{C_{r - 1}} = {}^{n + 1}{C_r}\].
Formula Used:The sum of two combination terms
\[{}^n{C_r} + {}^n{C_{r - 1}} = {}^{n + 1}{C_r}\]
Complete step by step solution:The given expression is \[{}^n{C_r} + {}^{n - 1}{C_r} + \cdots + {}^r{C_r}\]
Rewrite the given expression:
\[ = {}^r{C_r} + {}^{r + 1}{C_r} + {}^{r + 2}{C_r} + \cdots + {}^{n - 1}{C_r} + {}^n{C_r}\] …..(i)
We know that, \[{}^n{C_n} = 1\].
Therefore \[{}^r{C_r} = {}^{r + 1}{C_{r + 1}}\]
Putting \[{}^r{C_r} = {}^{r + 1}{C_{r + 1}}\] in (i)
\[ = \left( {{}^{r + 1}{C_{r + 1}} + {}^{r + 1}{C_r}} \right) + {}^{r + 2}{C_r} + \cdots + {}^{n - 1}{C_r} + {}^n{C_r}\]
Now applying the formula \[{}^n{C_r} + {}^n{C_{r - 1}} = {}^{n + 1}{C_r}\] in first two terms
\[ = \left( {{}^{r + 2}{C_{r + 1}}} \right) + {}^{r + 2}{C_r} + \cdots + {}^{n - 1}{C_r} + {}^n{C_r}\]
Again applying the formula \[{}^n{C_r} + {}^n{C_{r - 1}} = {}^{n + 1}{C_r}\] in first two terms
\[ = {}^{r + 2}{C_{r + 2}} + \cdots + {}^{n - 1}{C_r} + {}^n{C_r}\]
Similar way
\[ = {}^{n - 1}{C_{r + 1}} + {}^{n - 1}{C_r} + {}^n{C_r}\]
\[ = {}^n{C_{r + 1}} + {}^n{C_r}\]
\[ = {}^{n + 1}{C_{r + 1}}\]
Option ‘B’ is correct
Additional Information:A combination is a combination when r things are chosen from n things and the order of section does not matter.
The combination is represented by \[{}^n{C_r}\].
Note: Students often apply a wrong formula to solve it. They applied \[{}^n{C_r} + {}^n{C_{r - 1}} = {}^n{C_{r + 1}}\] which is an incorrect formula. The correct formula is \[{}^n{C_r} + {}^n{C_{r - 1}} = {}^{n + 1}{C_r}\].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Advanced 2025 Notes
