
What is the value of the definite integral \[\int\limits_1^5 {\left( {\left| {x - 3} \right| + \left| {1 - x} \right|} \right)} dx\]?
A. \[10\]
B. \[\dfrac{5}{6}\]
C. \[21\]
D. \[12\]
Answer
163.5k+ views
Hint: Here, a definite integral with absolute function is given. First, simplify the integral by applying the sum rule of the integration. Then, simplify the integrals by using the conditions for the absolute functions. After that, solve the integrals by applying the formulas of the integration. In the end, apply the limits to calculate the required answer.
Formula Used:The sum rule of the integration: \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\]
\[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
Complete step by step solution:The given definite integral is \[\int\limits_1^5 {\left( {\left| {x - 3} \right| + \left| {1 - x} \right|} \right)} dx\].
Let consider,
\[I = \int\limits_1^5 {\left( {\left| {x - 3} \right| + \left| {1 - x} \right|} \right)} dx\]
Apply the sum rule of the definite integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\].
\[I = \int\limits_1^5 {\left| {x - 3} \right|} dx + \int\limits_1^5 {\left| {1 - x} \right|} dx\]
Simplify the integrals by checking the values of the absolute value functions on the basis of the limits.
\[I = \int\limits_1^3 {\left| {x - 3} \right|} dx + \int\limits_3^5 {\left| {x - 3} \right|} dx + \int\limits_1^5 {\left| {1 - x} \right|} dx\]
\[ \Rightarrow I = \int\limits_1^3 { - \left( {x - 3} \right)} dx + \int\limits_3^5 {\left( {x - 3} \right)} dx + \int\limits_1^5 { - \left( {1 - x} \right)} dx\]
\[ \Rightarrow I = \int\limits_1^3 {\left( {3 - x} \right)} dx + \int\limits_3^5 {\left( {x - 3} \right)} dx + \int\limits_1^5 {\left( {x - 1} \right)} dx\]
Now apply the integration formulas \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b\] and \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\].
\[I = \left[ {3x - \dfrac{{{x^2}}}{2}} \right]_1^3 + \left[ {\dfrac{{{x^2}}}{2} - 3x} \right]_3^5 + \left[ {\dfrac{{{x^2}}}{2} - x} \right]_1^5\]
Apply the upper and lower limits.
\[I = \left[ {\left( {3\left( 3 \right) - \dfrac{{{3^2}}}{2}} \right) - \left( {3\left( 1 \right) - \dfrac{{{1^2}}}{2}} \right)} \right] + \left[ {\left( {\dfrac{{{5^2}}}{2} - 3\left( 5 \right)} \right) - \left( {\dfrac{{{3^2}}}{2} - 3\left( 3 \right)} \right)} \right] + \left[ {\left( {\dfrac{{{5^2}}}{2} - 5} \right) - \left( {\dfrac{{{1^2}}}{2} - 1} \right)} \right]\]
\[ \Rightarrow I = \left[ {\left( {9 - \dfrac{9}{2}} \right) - \left( {3 - \dfrac{1}{2}} \right)} \right] + \left[ {\left( {\dfrac{{25}}{2} - 15} \right) - \left( {\dfrac{9}{2} - 9} \right)} \right] + \left[ {\left( {\dfrac{{25}}{2} - 5} \right) - \left( {\dfrac{1}{2} - 1} \right)} \right]\]
\[ \Rightarrow I = \left[ {\dfrac{{18 - 9}}{2} - \dfrac{{6 - 1}}{2}} \right] + \left[ {\dfrac{{25 - 30}}{2} - \dfrac{{9 - 18}}{2}} \right] + \left[ {\dfrac{{25 - 10}}{2} - \dfrac{{1 - 2}}{2}} \right]\]
\[ \Rightarrow I = \left[ {\dfrac{9}{2} - \dfrac{5}{2}} \right] + \left[ {\dfrac{{ - 5}}{2} - \dfrac{{ - 9}}{2}} \right] + \left[ {\dfrac{{15}}{2} - \dfrac{{ - 1}}{2}} \right]\]
\[ \Rightarrow I = \left[ {\dfrac{9}{2} - \dfrac{5}{2}} \right] + \left[ {\dfrac{{ - 5}}{2} + \dfrac{9}{2}} \right] + \left[ {\dfrac{{15}}{2} + \dfrac{1}{2}} \right]\]
\[ \Rightarrow I = \dfrac{{9 - 5}}{2} + \dfrac{{ - 5 + 9}}{2} + \dfrac{{15 + 1}}{2}\]
\[ \Rightarrow I = \dfrac{4}{2} + \dfrac{4}{2} + \dfrac{{16}}{2}\]
\[ \Rightarrow I = 2 + 2 + 8\]
\[ \Rightarrow I = 12\]
Therefore, \[\int\limits_1^5 {\left( {\left| {x - 3} \right| + \left| {1 - x} \right|} \right)} dx = 12\].
Option ‘D’ is correct
Note: Students directly solve the absolute value function as the normal function. They did not check whether the function is changing its sign at some point. Because of that, they get the wrong answer. So, always check the changing point of the absolute value function.
Formula Used:The sum rule of the integration: \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\]
\[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
Complete step by step solution:The given definite integral is \[\int\limits_1^5 {\left( {\left| {x - 3} \right| + \left| {1 - x} \right|} \right)} dx\].
Let consider,
\[I = \int\limits_1^5 {\left( {\left| {x - 3} \right| + \left| {1 - x} \right|} \right)} dx\]
Apply the sum rule of the definite integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\].
\[I = \int\limits_1^5 {\left| {x - 3} \right|} dx + \int\limits_1^5 {\left| {1 - x} \right|} dx\]
Simplify the integrals by checking the values of the absolute value functions on the basis of the limits.
\[I = \int\limits_1^3 {\left| {x - 3} \right|} dx + \int\limits_3^5 {\left| {x - 3} \right|} dx + \int\limits_1^5 {\left| {1 - x} \right|} dx\]
\[ \Rightarrow I = \int\limits_1^3 { - \left( {x - 3} \right)} dx + \int\limits_3^5 {\left( {x - 3} \right)} dx + \int\limits_1^5 { - \left( {1 - x} \right)} dx\]
\[ \Rightarrow I = \int\limits_1^3 {\left( {3 - x} \right)} dx + \int\limits_3^5 {\left( {x - 3} \right)} dx + \int\limits_1^5 {\left( {x - 1} \right)} dx\]
Now apply the integration formulas \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b\] and \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\].
\[I = \left[ {3x - \dfrac{{{x^2}}}{2}} \right]_1^3 + \left[ {\dfrac{{{x^2}}}{2} - 3x} \right]_3^5 + \left[ {\dfrac{{{x^2}}}{2} - x} \right]_1^5\]
Apply the upper and lower limits.
\[I = \left[ {\left( {3\left( 3 \right) - \dfrac{{{3^2}}}{2}} \right) - \left( {3\left( 1 \right) - \dfrac{{{1^2}}}{2}} \right)} \right] + \left[ {\left( {\dfrac{{{5^2}}}{2} - 3\left( 5 \right)} \right) - \left( {\dfrac{{{3^2}}}{2} - 3\left( 3 \right)} \right)} \right] + \left[ {\left( {\dfrac{{{5^2}}}{2} - 5} \right) - \left( {\dfrac{{{1^2}}}{2} - 1} \right)} \right]\]
\[ \Rightarrow I = \left[ {\left( {9 - \dfrac{9}{2}} \right) - \left( {3 - \dfrac{1}{2}} \right)} \right] + \left[ {\left( {\dfrac{{25}}{2} - 15} \right) - \left( {\dfrac{9}{2} - 9} \right)} \right] + \left[ {\left( {\dfrac{{25}}{2} - 5} \right) - \left( {\dfrac{1}{2} - 1} \right)} \right]\]
\[ \Rightarrow I = \left[ {\dfrac{{18 - 9}}{2} - \dfrac{{6 - 1}}{2}} \right] + \left[ {\dfrac{{25 - 30}}{2} - \dfrac{{9 - 18}}{2}} \right] + \left[ {\dfrac{{25 - 10}}{2} - \dfrac{{1 - 2}}{2}} \right]\]
\[ \Rightarrow I = \left[ {\dfrac{9}{2} - \dfrac{5}{2}} \right] + \left[ {\dfrac{{ - 5}}{2} - \dfrac{{ - 9}}{2}} \right] + \left[ {\dfrac{{15}}{2} - \dfrac{{ - 1}}{2}} \right]\]
\[ \Rightarrow I = \left[ {\dfrac{9}{2} - \dfrac{5}{2}} \right] + \left[ {\dfrac{{ - 5}}{2} + \dfrac{9}{2}} \right] + \left[ {\dfrac{{15}}{2} + \dfrac{1}{2}} \right]\]
\[ \Rightarrow I = \dfrac{{9 - 5}}{2} + \dfrac{{ - 5 + 9}}{2} + \dfrac{{15 + 1}}{2}\]
\[ \Rightarrow I = \dfrac{4}{2} + \dfrac{4}{2} + \dfrac{{16}}{2}\]
\[ \Rightarrow I = 2 + 2 + 8\]
\[ \Rightarrow I = 12\]
Therefore, \[\int\limits_1^5 {\left( {\left| {x - 3} \right| + \left| {1 - x} \right|} \right)} dx = 12\].
Option ‘D’ is correct
Note: Students directly solve the absolute value function as the normal function. They did not check whether the function is changing its sign at some point. Because of that, they get the wrong answer. So, always check the changing point of the absolute value function.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
