
What is the value of the definite integral \[\int\limits_1^5 {\left( {\left| {x - 3} \right| + \left| {1 - x} \right|} \right)} dx\]?
A. \[10\]
B. \[\dfrac{5}{6}\]
C. \[21\]
D. \[12\]
Answer
216.6k+ views
Hint: Here, a definite integral with absolute function is given. First, simplify the integral by applying the sum rule of the integration. Then, simplify the integrals by using the conditions for the absolute functions. After that, solve the integrals by applying the formulas of the integration. In the end, apply the limits to calculate the required answer.
Formula Used:The sum rule of the integration: \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\]
\[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
Complete step by step solution:The given definite integral is \[\int\limits_1^5 {\left( {\left| {x - 3} \right| + \left| {1 - x} \right|} \right)} dx\].
Let consider,
\[I = \int\limits_1^5 {\left( {\left| {x - 3} \right| + \left| {1 - x} \right|} \right)} dx\]
Apply the sum rule of the definite integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\].
\[I = \int\limits_1^5 {\left| {x - 3} \right|} dx + \int\limits_1^5 {\left| {1 - x} \right|} dx\]
Simplify the integrals by checking the values of the absolute value functions on the basis of the limits.
\[I = \int\limits_1^3 {\left| {x - 3} \right|} dx + \int\limits_3^5 {\left| {x - 3} \right|} dx + \int\limits_1^5 {\left| {1 - x} \right|} dx\]
\[ \Rightarrow I = \int\limits_1^3 { - \left( {x - 3} \right)} dx + \int\limits_3^5 {\left( {x - 3} \right)} dx + \int\limits_1^5 { - \left( {1 - x} \right)} dx\]
\[ \Rightarrow I = \int\limits_1^3 {\left( {3 - x} \right)} dx + \int\limits_3^5 {\left( {x - 3} \right)} dx + \int\limits_1^5 {\left( {x - 1} \right)} dx\]
Now apply the integration formulas \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b\] and \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\].
\[I = \left[ {3x - \dfrac{{{x^2}}}{2}} \right]_1^3 + \left[ {\dfrac{{{x^2}}}{2} - 3x} \right]_3^5 + \left[ {\dfrac{{{x^2}}}{2} - x} \right]_1^5\]
Apply the upper and lower limits.
\[I = \left[ {\left( {3\left( 3 \right) - \dfrac{{{3^2}}}{2}} \right) - \left( {3\left( 1 \right) - \dfrac{{{1^2}}}{2}} \right)} \right] + \left[ {\left( {\dfrac{{{5^2}}}{2} - 3\left( 5 \right)} \right) - \left( {\dfrac{{{3^2}}}{2} - 3\left( 3 \right)} \right)} \right] + \left[ {\left( {\dfrac{{{5^2}}}{2} - 5} \right) - \left( {\dfrac{{{1^2}}}{2} - 1} \right)} \right]\]
\[ \Rightarrow I = \left[ {\left( {9 - \dfrac{9}{2}} \right) - \left( {3 - \dfrac{1}{2}} \right)} \right] + \left[ {\left( {\dfrac{{25}}{2} - 15} \right) - \left( {\dfrac{9}{2} - 9} \right)} \right] + \left[ {\left( {\dfrac{{25}}{2} - 5} \right) - \left( {\dfrac{1}{2} - 1} \right)} \right]\]
\[ \Rightarrow I = \left[ {\dfrac{{18 - 9}}{2} - \dfrac{{6 - 1}}{2}} \right] + \left[ {\dfrac{{25 - 30}}{2} - \dfrac{{9 - 18}}{2}} \right] + \left[ {\dfrac{{25 - 10}}{2} - \dfrac{{1 - 2}}{2}} \right]\]
\[ \Rightarrow I = \left[ {\dfrac{9}{2} - \dfrac{5}{2}} \right] + \left[ {\dfrac{{ - 5}}{2} - \dfrac{{ - 9}}{2}} \right] + \left[ {\dfrac{{15}}{2} - \dfrac{{ - 1}}{2}} \right]\]
\[ \Rightarrow I = \left[ {\dfrac{9}{2} - \dfrac{5}{2}} \right] + \left[ {\dfrac{{ - 5}}{2} + \dfrac{9}{2}} \right] + \left[ {\dfrac{{15}}{2} + \dfrac{1}{2}} \right]\]
\[ \Rightarrow I = \dfrac{{9 - 5}}{2} + \dfrac{{ - 5 + 9}}{2} + \dfrac{{15 + 1}}{2}\]
\[ \Rightarrow I = \dfrac{4}{2} + \dfrac{4}{2} + \dfrac{{16}}{2}\]
\[ \Rightarrow I = 2 + 2 + 8\]
\[ \Rightarrow I = 12\]
Therefore, \[\int\limits_1^5 {\left( {\left| {x - 3} \right| + \left| {1 - x} \right|} \right)} dx = 12\].
Option ‘D’ is correct
Note: Students directly solve the absolute value function as the normal function. They did not check whether the function is changing its sign at some point. Because of that, they get the wrong answer. So, always check the changing point of the absolute value function.
Formula Used:The sum rule of the integration: \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\]
\[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
Complete step by step solution:The given definite integral is \[\int\limits_1^5 {\left( {\left| {x - 3} \right| + \left| {1 - x} \right|} \right)} dx\].
Let consider,
\[I = \int\limits_1^5 {\left( {\left| {x - 3} \right| + \left| {1 - x} \right|} \right)} dx\]
Apply the sum rule of the definite integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\].
\[I = \int\limits_1^5 {\left| {x - 3} \right|} dx + \int\limits_1^5 {\left| {1 - x} \right|} dx\]
Simplify the integrals by checking the values of the absolute value functions on the basis of the limits.
\[I = \int\limits_1^3 {\left| {x - 3} \right|} dx + \int\limits_3^5 {\left| {x - 3} \right|} dx + \int\limits_1^5 {\left| {1 - x} \right|} dx\]
\[ \Rightarrow I = \int\limits_1^3 { - \left( {x - 3} \right)} dx + \int\limits_3^5 {\left( {x - 3} \right)} dx + \int\limits_1^5 { - \left( {1 - x} \right)} dx\]
\[ \Rightarrow I = \int\limits_1^3 {\left( {3 - x} \right)} dx + \int\limits_3^5 {\left( {x - 3} \right)} dx + \int\limits_1^5 {\left( {x - 1} \right)} dx\]
Now apply the integration formulas \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b\] and \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\].
\[I = \left[ {3x - \dfrac{{{x^2}}}{2}} \right]_1^3 + \left[ {\dfrac{{{x^2}}}{2} - 3x} \right]_3^5 + \left[ {\dfrac{{{x^2}}}{2} - x} \right]_1^5\]
Apply the upper and lower limits.
\[I = \left[ {\left( {3\left( 3 \right) - \dfrac{{{3^2}}}{2}} \right) - \left( {3\left( 1 \right) - \dfrac{{{1^2}}}{2}} \right)} \right] + \left[ {\left( {\dfrac{{{5^2}}}{2} - 3\left( 5 \right)} \right) - \left( {\dfrac{{{3^2}}}{2} - 3\left( 3 \right)} \right)} \right] + \left[ {\left( {\dfrac{{{5^2}}}{2} - 5} \right) - \left( {\dfrac{{{1^2}}}{2} - 1} \right)} \right]\]
\[ \Rightarrow I = \left[ {\left( {9 - \dfrac{9}{2}} \right) - \left( {3 - \dfrac{1}{2}} \right)} \right] + \left[ {\left( {\dfrac{{25}}{2} - 15} \right) - \left( {\dfrac{9}{2} - 9} \right)} \right] + \left[ {\left( {\dfrac{{25}}{2} - 5} \right) - \left( {\dfrac{1}{2} - 1} \right)} \right]\]
\[ \Rightarrow I = \left[ {\dfrac{{18 - 9}}{2} - \dfrac{{6 - 1}}{2}} \right] + \left[ {\dfrac{{25 - 30}}{2} - \dfrac{{9 - 18}}{2}} \right] + \left[ {\dfrac{{25 - 10}}{2} - \dfrac{{1 - 2}}{2}} \right]\]
\[ \Rightarrow I = \left[ {\dfrac{9}{2} - \dfrac{5}{2}} \right] + \left[ {\dfrac{{ - 5}}{2} - \dfrac{{ - 9}}{2}} \right] + \left[ {\dfrac{{15}}{2} - \dfrac{{ - 1}}{2}} \right]\]
\[ \Rightarrow I = \left[ {\dfrac{9}{2} - \dfrac{5}{2}} \right] + \left[ {\dfrac{{ - 5}}{2} + \dfrac{9}{2}} \right] + \left[ {\dfrac{{15}}{2} + \dfrac{1}{2}} \right]\]
\[ \Rightarrow I = \dfrac{{9 - 5}}{2} + \dfrac{{ - 5 + 9}}{2} + \dfrac{{15 + 1}}{2}\]
\[ \Rightarrow I = \dfrac{4}{2} + \dfrac{4}{2} + \dfrac{{16}}{2}\]
\[ \Rightarrow I = 2 + 2 + 8\]
\[ \Rightarrow I = 12\]
Therefore, \[\int\limits_1^5 {\left( {\left| {x - 3} \right| + \left| {1 - x} \right|} \right)} dx = 12\].
Option ‘D’ is correct
Note: Students directly solve the absolute value function as the normal function. They did not check whether the function is changing its sign at some point. Because of that, they get the wrong answer. So, always check the changing point of the absolute value function.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

