
What is the value of the definite integral \[\int\limits_1^5 {\left( {\left| {x - 3} \right| + \left| {1 - x} \right|} \right)} dx\]?
A. \[10\]
B. \[\dfrac{5}{6}\]
C. \[21\]
D. \[12\]
Answer
232.8k+ views
Hint: Here, a definite integral with absolute function is given. First, simplify the integral by applying the sum rule of the integration. Then, simplify the integrals by using the conditions for the absolute functions. After that, solve the integrals by applying the formulas of the integration. In the end, apply the limits to calculate the required answer.
Formula Used:The sum rule of the integration: \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\]
\[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
Complete step by step solution:The given definite integral is \[\int\limits_1^5 {\left( {\left| {x - 3} \right| + \left| {1 - x} \right|} \right)} dx\].
Let consider,
\[I = \int\limits_1^5 {\left( {\left| {x - 3} \right| + \left| {1 - x} \right|} \right)} dx\]
Apply the sum rule of the definite integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\].
\[I = \int\limits_1^5 {\left| {x - 3} \right|} dx + \int\limits_1^5 {\left| {1 - x} \right|} dx\]
Simplify the integrals by checking the values of the absolute value functions on the basis of the limits.
\[I = \int\limits_1^3 {\left| {x - 3} \right|} dx + \int\limits_3^5 {\left| {x - 3} \right|} dx + \int\limits_1^5 {\left| {1 - x} \right|} dx\]
\[ \Rightarrow I = \int\limits_1^3 { - \left( {x - 3} \right)} dx + \int\limits_3^5 {\left( {x - 3} \right)} dx + \int\limits_1^5 { - \left( {1 - x} \right)} dx\]
\[ \Rightarrow I = \int\limits_1^3 {\left( {3 - x} \right)} dx + \int\limits_3^5 {\left( {x - 3} \right)} dx + \int\limits_1^5 {\left( {x - 1} \right)} dx\]
Now apply the integration formulas \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b\] and \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\].
\[I = \left[ {3x - \dfrac{{{x^2}}}{2}} \right]_1^3 + \left[ {\dfrac{{{x^2}}}{2} - 3x} \right]_3^5 + \left[ {\dfrac{{{x^2}}}{2} - x} \right]_1^5\]
Apply the upper and lower limits.
\[I = \left[ {\left( {3\left( 3 \right) - \dfrac{{{3^2}}}{2}} \right) - \left( {3\left( 1 \right) - \dfrac{{{1^2}}}{2}} \right)} \right] + \left[ {\left( {\dfrac{{{5^2}}}{2} - 3\left( 5 \right)} \right) - \left( {\dfrac{{{3^2}}}{2} - 3\left( 3 \right)} \right)} \right] + \left[ {\left( {\dfrac{{{5^2}}}{2} - 5} \right) - \left( {\dfrac{{{1^2}}}{2} - 1} \right)} \right]\]
\[ \Rightarrow I = \left[ {\left( {9 - \dfrac{9}{2}} \right) - \left( {3 - \dfrac{1}{2}} \right)} \right] + \left[ {\left( {\dfrac{{25}}{2} - 15} \right) - \left( {\dfrac{9}{2} - 9} \right)} \right] + \left[ {\left( {\dfrac{{25}}{2} - 5} \right) - \left( {\dfrac{1}{2} - 1} \right)} \right]\]
\[ \Rightarrow I = \left[ {\dfrac{{18 - 9}}{2} - \dfrac{{6 - 1}}{2}} \right] + \left[ {\dfrac{{25 - 30}}{2} - \dfrac{{9 - 18}}{2}} \right] + \left[ {\dfrac{{25 - 10}}{2} - \dfrac{{1 - 2}}{2}} \right]\]
\[ \Rightarrow I = \left[ {\dfrac{9}{2} - \dfrac{5}{2}} \right] + \left[ {\dfrac{{ - 5}}{2} - \dfrac{{ - 9}}{2}} \right] + \left[ {\dfrac{{15}}{2} - \dfrac{{ - 1}}{2}} \right]\]
\[ \Rightarrow I = \left[ {\dfrac{9}{2} - \dfrac{5}{2}} \right] + \left[ {\dfrac{{ - 5}}{2} + \dfrac{9}{2}} \right] + \left[ {\dfrac{{15}}{2} + \dfrac{1}{2}} \right]\]
\[ \Rightarrow I = \dfrac{{9 - 5}}{2} + \dfrac{{ - 5 + 9}}{2} + \dfrac{{15 + 1}}{2}\]
\[ \Rightarrow I = \dfrac{4}{2} + \dfrac{4}{2} + \dfrac{{16}}{2}\]
\[ \Rightarrow I = 2 + 2 + 8\]
\[ \Rightarrow I = 12\]
Therefore, \[\int\limits_1^5 {\left( {\left| {x - 3} \right| + \left| {1 - x} \right|} \right)} dx = 12\].
Option ‘D’ is correct
Note: Students directly solve the absolute value function as the normal function. They did not check whether the function is changing its sign at some point. Because of that, they get the wrong answer. So, always check the changing point of the absolute value function.
Formula Used:The sum rule of the integration: \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\]
\[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
Complete step by step solution:The given definite integral is \[\int\limits_1^5 {\left( {\left| {x - 3} \right| + \left| {1 - x} \right|} \right)} dx\].
Let consider,
\[I = \int\limits_1^5 {\left( {\left| {x - 3} \right| + \left| {1 - x} \right|} \right)} dx\]
Apply the sum rule of the definite integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\].
\[I = \int\limits_1^5 {\left| {x - 3} \right|} dx + \int\limits_1^5 {\left| {1 - x} \right|} dx\]
Simplify the integrals by checking the values of the absolute value functions on the basis of the limits.
\[I = \int\limits_1^3 {\left| {x - 3} \right|} dx + \int\limits_3^5 {\left| {x - 3} \right|} dx + \int\limits_1^5 {\left| {1 - x} \right|} dx\]
\[ \Rightarrow I = \int\limits_1^3 { - \left( {x - 3} \right)} dx + \int\limits_3^5 {\left( {x - 3} \right)} dx + \int\limits_1^5 { - \left( {1 - x} \right)} dx\]
\[ \Rightarrow I = \int\limits_1^3 {\left( {3 - x} \right)} dx + \int\limits_3^5 {\left( {x - 3} \right)} dx + \int\limits_1^5 {\left( {x - 1} \right)} dx\]
Now apply the integration formulas \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b\] and \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\].
\[I = \left[ {3x - \dfrac{{{x^2}}}{2}} \right]_1^3 + \left[ {\dfrac{{{x^2}}}{2} - 3x} \right]_3^5 + \left[ {\dfrac{{{x^2}}}{2} - x} \right]_1^5\]
Apply the upper and lower limits.
\[I = \left[ {\left( {3\left( 3 \right) - \dfrac{{{3^2}}}{2}} \right) - \left( {3\left( 1 \right) - \dfrac{{{1^2}}}{2}} \right)} \right] + \left[ {\left( {\dfrac{{{5^2}}}{2} - 3\left( 5 \right)} \right) - \left( {\dfrac{{{3^2}}}{2} - 3\left( 3 \right)} \right)} \right] + \left[ {\left( {\dfrac{{{5^2}}}{2} - 5} \right) - \left( {\dfrac{{{1^2}}}{2} - 1} \right)} \right]\]
\[ \Rightarrow I = \left[ {\left( {9 - \dfrac{9}{2}} \right) - \left( {3 - \dfrac{1}{2}} \right)} \right] + \left[ {\left( {\dfrac{{25}}{2} - 15} \right) - \left( {\dfrac{9}{2} - 9} \right)} \right] + \left[ {\left( {\dfrac{{25}}{2} - 5} \right) - \left( {\dfrac{1}{2} - 1} \right)} \right]\]
\[ \Rightarrow I = \left[ {\dfrac{{18 - 9}}{2} - \dfrac{{6 - 1}}{2}} \right] + \left[ {\dfrac{{25 - 30}}{2} - \dfrac{{9 - 18}}{2}} \right] + \left[ {\dfrac{{25 - 10}}{2} - \dfrac{{1 - 2}}{2}} \right]\]
\[ \Rightarrow I = \left[ {\dfrac{9}{2} - \dfrac{5}{2}} \right] + \left[ {\dfrac{{ - 5}}{2} - \dfrac{{ - 9}}{2}} \right] + \left[ {\dfrac{{15}}{2} - \dfrac{{ - 1}}{2}} \right]\]
\[ \Rightarrow I = \left[ {\dfrac{9}{2} - \dfrac{5}{2}} \right] + \left[ {\dfrac{{ - 5}}{2} + \dfrac{9}{2}} \right] + \left[ {\dfrac{{15}}{2} + \dfrac{1}{2}} \right]\]
\[ \Rightarrow I = \dfrac{{9 - 5}}{2} + \dfrac{{ - 5 + 9}}{2} + \dfrac{{15 + 1}}{2}\]
\[ \Rightarrow I = \dfrac{4}{2} + \dfrac{4}{2} + \dfrac{{16}}{2}\]
\[ \Rightarrow I = 2 + 2 + 8\]
\[ \Rightarrow I = 12\]
Therefore, \[\int\limits_1^5 {\left( {\left| {x - 3} \right| + \left| {1 - x} \right|} \right)} dx = 12\].
Option ‘D’ is correct
Note: Students directly solve the absolute value function as the normal function. They did not check whether the function is changing its sign at some point. Because of that, they get the wrong answer. So, always check the changing point of the absolute value function.
Recently Updated Pages
The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

