
What is the value of the definite integral \[\int\limits_1^5 {\left( {\left| {x - 3} \right| + \left| {1 - x} \right|} \right)} dx\]?
A. \[10\]
B. \[\dfrac{5}{6}\]
C. \[21\]
D. \[12\]
Answer
161.7k+ views
Hint: Here, a definite integral with absolute function is given. First, simplify the integral by applying the sum rule of the integration. Then, simplify the integrals by using the conditions for the absolute functions. After that, solve the integrals by applying the formulas of the integration. In the end, apply the limits to calculate the required answer.
Formula Used:The sum rule of the integration: \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\]
\[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
Complete step by step solution:The given definite integral is \[\int\limits_1^5 {\left( {\left| {x - 3} \right| + \left| {1 - x} \right|} \right)} dx\].
Let consider,
\[I = \int\limits_1^5 {\left( {\left| {x - 3} \right| + \left| {1 - x} \right|} \right)} dx\]
Apply the sum rule of the definite integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\].
\[I = \int\limits_1^5 {\left| {x - 3} \right|} dx + \int\limits_1^5 {\left| {1 - x} \right|} dx\]
Simplify the integrals by checking the values of the absolute value functions on the basis of the limits.
\[I = \int\limits_1^3 {\left| {x - 3} \right|} dx + \int\limits_3^5 {\left| {x - 3} \right|} dx + \int\limits_1^5 {\left| {1 - x} \right|} dx\]
\[ \Rightarrow I = \int\limits_1^3 { - \left( {x - 3} \right)} dx + \int\limits_3^5 {\left( {x - 3} \right)} dx + \int\limits_1^5 { - \left( {1 - x} \right)} dx\]
\[ \Rightarrow I = \int\limits_1^3 {\left( {3 - x} \right)} dx + \int\limits_3^5 {\left( {x - 3} \right)} dx + \int\limits_1^5 {\left( {x - 1} \right)} dx\]
Now apply the integration formulas \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b\] and \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\].
\[I = \left[ {3x - \dfrac{{{x^2}}}{2}} \right]_1^3 + \left[ {\dfrac{{{x^2}}}{2} - 3x} \right]_3^5 + \left[ {\dfrac{{{x^2}}}{2} - x} \right]_1^5\]
Apply the upper and lower limits.
\[I = \left[ {\left( {3\left( 3 \right) - \dfrac{{{3^2}}}{2}} \right) - \left( {3\left( 1 \right) - \dfrac{{{1^2}}}{2}} \right)} \right] + \left[ {\left( {\dfrac{{{5^2}}}{2} - 3\left( 5 \right)} \right) - \left( {\dfrac{{{3^2}}}{2} - 3\left( 3 \right)} \right)} \right] + \left[ {\left( {\dfrac{{{5^2}}}{2} - 5} \right) - \left( {\dfrac{{{1^2}}}{2} - 1} \right)} \right]\]
\[ \Rightarrow I = \left[ {\left( {9 - \dfrac{9}{2}} \right) - \left( {3 - \dfrac{1}{2}} \right)} \right] + \left[ {\left( {\dfrac{{25}}{2} - 15} \right) - \left( {\dfrac{9}{2} - 9} \right)} \right] + \left[ {\left( {\dfrac{{25}}{2} - 5} \right) - \left( {\dfrac{1}{2} - 1} \right)} \right]\]
\[ \Rightarrow I = \left[ {\dfrac{{18 - 9}}{2} - \dfrac{{6 - 1}}{2}} \right] + \left[ {\dfrac{{25 - 30}}{2} - \dfrac{{9 - 18}}{2}} \right] + \left[ {\dfrac{{25 - 10}}{2} - \dfrac{{1 - 2}}{2}} \right]\]
\[ \Rightarrow I = \left[ {\dfrac{9}{2} - \dfrac{5}{2}} \right] + \left[ {\dfrac{{ - 5}}{2} - \dfrac{{ - 9}}{2}} \right] + \left[ {\dfrac{{15}}{2} - \dfrac{{ - 1}}{2}} \right]\]
\[ \Rightarrow I = \left[ {\dfrac{9}{2} - \dfrac{5}{2}} \right] + \left[ {\dfrac{{ - 5}}{2} + \dfrac{9}{2}} \right] + \left[ {\dfrac{{15}}{2} + \dfrac{1}{2}} \right]\]
\[ \Rightarrow I = \dfrac{{9 - 5}}{2} + \dfrac{{ - 5 + 9}}{2} + \dfrac{{15 + 1}}{2}\]
\[ \Rightarrow I = \dfrac{4}{2} + \dfrac{4}{2} + \dfrac{{16}}{2}\]
\[ \Rightarrow I = 2 + 2 + 8\]
\[ \Rightarrow I = 12\]
Therefore, \[\int\limits_1^5 {\left( {\left| {x - 3} \right| + \left| {1 - x} \right|} \right)} dx = 12\].
Option ‘D’ is correct
Note: Students directly solve the absolute value function as the normal function. They did not check whether the function is changing its sign at some point. Because of that, they get the wrong answer. So, always check the changing point of the absolute value function.
Formula Used:The sum rule of the integration: \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\]
\[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
Complete step by step solution:The given definite integral is \[\int\limits_1^5 {\left( {\left| {x - 3} \right| + \left| {1 - x} \right|} \right)} dx\].
Let consider,
\[I = \int\limits_1^5 {\left( {\left| {x - 3} \right| + \left| {1 - x} \right|} \right)} dx\]
Apply the sum rule of the definite integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\].
\[I = \int\limits_1^5 {\left| {x - 3} \right|} dx + \int\limits_1^5 {\left| {1 - x} \right|} dx\]
Simplify the integrals by checking the values of the absolute value functions on the basis of the limits.
\[I = \int\limits_1^3 {\left| {x - 3} \right|} dx + \int\limits_3^5 {\left| {x - 3} \right|} dx + \int\limits_1^5 {\left| {1 - x} \right|} dx\]
\[ \Rightarrow I = \int\limits_1^3 { - \left( {x - 3} \right)} dx + \int\limits_3^5 {\left( {x - 3} \right)} dx + \int\limits_1^5 { - \left( {1 - x} \right)} dx\]
\[ \Rightarrow I = \int\limits_1^3 {\left( {3 - x} \right)} dx + \int\limits_3^5 {\left( {x - 3} \right)} dx + \int\limits_1^5 {\left( {x - 1} \right)} dx\]
Now apply the integration formulas \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b\] and \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\].
\[I = \left[ {3x - \dfrac{{{x^2}}}{2}} \right]_1^3 + \left[ {\dfrac{{{x^2}}}{2} - 3x} \right]_3^5 + \left[ {\dfrac{{{x^2}}}{2} - x} \right]_1^5\]
Apply the upper and lower limits.
\[I = \left[ {\left( {3\left( 3 \right) - \dfrac{{{3^2}}}{2}} \right) - \left( {3\left( 1 \right) - \dfrac{{{1^2}}}{2}} \right)} \right] + \left[ {\left( {\dfrac{{{5^2}}}{2} - 3\left( 5 \right)} \right) - \left( {\dfrac{{{3^2}}}{2} - 3\left( 3 \right)} \right)} \right] + \left[ {\left( {\dfrac{{{5^2}}}{2} - 5} \right) - \left( {\dfrac{{{1^2}}}{2} - 1} \right)} \right]\]
\[ \Rightarrow I = \left[ {\left( {9 - \dfrac{9}{2}} \right) - \left( {3 - \dfrac{1}{2}} \right)} \right] + \left[ {\left( {\dfrac{{25}}{2} - 15} \right) - \left( {\dfrac{9}{2} - 9} \right)} \right] + \left[ {\left( {\dfrac{{25}}{2} - 5} \right) - \left( {\dfrac{1}{2} - 1} \right)} \right]\]
\[ \Rightarrow I = \left[ {\dfrac{{18 - 9}}{2} - \dfrac{{6 - 1}}{2}} \right] + \left[ {\dfrac{{25 - 30}}{2} - \dfrac{{9 - 18}}{2}} \right] + \left[ {\dfrac{{25 - 10}}{2} - \dfrac{{1 - 2}}{2}} \right]\]
\[ \Rightarrow I = \left[ {\dfrac{9}{2} - \dfrac{5}{2}} \right] + \left[ {\dfrac{{ - 5}}{2} - \dfrac{{ - 9}}{2}} \right] + \left[ {\dfrac{{15}}{2} - \dfrac{{ - 1}}{2}} \right]\]
\[ \Rightarrow I = \left[ {\dfrac{9}{2} - \dfrac{5}{2}} \right] + \left[ {\dfrac{{ - 5}}{2} + \dfrac{9}{2}} \right] + \left[ {\dfrac{{15}}{2} + \dfrac{1}{2}} \right]\]
\[ \Rightarrow I = \dfrac{{9 - 5}}{2} + \dfrac{{ - 5 + 9}}{2} + \dfrac{{15 + 1}}{2}\]
\[ \Rightarrow I = \dfrac{4}{2} + \dfrac{4}{2} + \dfrac{{16}}{2}\]
\[ \Rightarrow I = 2 + 2 + 8\]
\[ \Rightarrow I = 12\]
Therefore, \[\int\limits_1^5 {\left( {\left| {x - 3} \right| + \left| {1 - x} \right|} \right)} dx = 12\].
Option ‘D’ is correct
Note: Students directly solve the absolute value function as the normal function. They did not check whether the function is changing its sign at some point. Because of that, they get the wrong answer. So, always check the changing point of the absolute value function.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
