
What is the value of the definite integral \[\int\limits_0^{\dfrac{\pi }{2}} {x\cot x} dx\]?
A. \[ - \dfrac{\pi }{2}\log 2\]
B. \[\dfrac{\pi }{2}\log 2\]
C. \[\pi \log 2\]
D. \[ - \pi \log 2\]
Answer
162.6k+ views
Hint: Here, a definite integral is given. First, solve the integral by applying the integration by parts method. Then, solve the first term by applying the limits. After that, solve the simplify the integral by applying the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]. and solve them using the u-substitution method, trigonometric and logarithmic properties. In the end, apply the limits and get the required answer.
Formula Used:Integration by parts formula: \[\int {f\left( x \right)} g\left( x \right)dx = f\left( x \right)\int {g\left( x \right)} dx - \int {\left[ {\dfrac{d}{{dx}}f\left( x \right)\int {g\left( x \right)dx} } \right]} dx\]
\[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\]
\[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
\[\log \left( a \right) + \log \left( b \right) = \log \left( {ab} \right)\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
\[\sin 2x = 2\sin x\cos x\]
\[\int {\cot xdx = \log \sin x} \]
Complete step by step solution:The given definite integral is \[\int\limits_0^{\dfrac{\pi }{2}} {x\cot x} dx\].
Let consider,
\[I = \int\limits_0^{\dfrac{\pi }{2}} {x\cot x} dx\]
Now solve the integral by the integration by parts formula \[\int {f\left( x \right)} g\left( x \right)dx = f\left( x \right)\int {g\left( x \right)} dx - \int {\left[ {\dfrac{d}{{dx}}f\left( x \right)\int {g\left( x \right)dx} } \right]} dx\]
\[I = \left[ {x\int {\cot xdx} } \right]_0^{\dfrac{\pi }{2}} - \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{d}{{dx}}x\int {\cot xdx} } \right]} dx\]
\[ \Rightarrow I = \left[ {x\log \sin x} \right]_0^{\dfrac{\pi }{2}} - \int\limits_0^{\dfrac{\pi }{2}} {\left[ {1 \times \log \sin x} \right]} dx\]
\[ \Rightarrow I = \left[ {\dfrac{\pi }{2}\log \sin \dfrac{\pi }{2} - 0\log \sin 0} \right] - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin x} dx\]
\[ \Rightarrow I = \left[ {\dfrac{\pi }{2}\log 1 - 0} \right] - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin x} dx\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left( 0 \right) - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin x} dx\]
\[ \Rightarrow I = - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin x} dx\] \[.....\left( 1 \right)\]
Now apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\].
\[ \Rightarrow I = - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin \left( {\dfrac{\pi }{2} - x} \right)dx} \]
\[ \Rightarrow I = - \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} \] \[.....\left( 2 \right)\]
Add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[ \Rightarrow I + I = - \left[ {\int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} + \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} } \right]\]
Apply the sum rule of integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx} + \int\limits_a^b {g\left( x \right)dx} \].
\[ \Rightarrow 2I = - \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin x + \log \cos x} \right]dx} \]
Apply the sum property of the logarithm \[\log \left( a \right) + \log \left( b \right) = \log \left( {ab} \right)\] .
\[ \Rightarrow 2I = - \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin x\cos x} \right]dx} \]
\[ \Rightarrow 2I = - \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{2\sin x\cos x}}{2}} \right)dx} \]
\[ \Rightarrow 2I = - \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{\sin 2x}}{2}} \right)dx} \]
Apply the quotient property of logarithm \[\log \left( {\dfrac{a}{b}} \right) = \log \left( a \right) - \log \left( b \right)\]
\[ \Rightarrow 2I = - \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{\sin 2x}}{2}} \right)dx} \]
\[ \Rightarrow 2I = - \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin 2x - \log 2} \right]dx} \]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin 2xdx} \]
\[ \Rightarrow 2I = \log 2\int\limits_0^{\dfrac{\pi }{2}} {dx} - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin 2xdx} \] \[.....\left( 3 \right)\]
Now substitute \[2x = u\] in the first integral.
Then, \[dx = \dfrac{{du}}{2}\]
The limits changed as follows:
As \[x \to 0\], then \[u \to 0\]
As \[x \to \dfrac{\pi }{2}\], then \[u \to \pi \]
Substitute the values in the equation \[\left( 3 \right)\].
\[2I = \log 2\int\limits_0^{\dfrac{\pi }{2}} {dx} - \dfrac{1}{2}\int\limits_0^\pi {\log \sin udu} \]
Apply the integration rule \[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\].
\[2I = \log 2\int\limits_0^{\dfrac{\pi }{2}} {dx} - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin udu} \]
From equation \[\left( 1 \right)\], we get \[I = - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin udu} \].
\[2I = \log 2\int\limits_0^{\dfrac{\pi }{2}} {dx} + I\]
\[ \Rightarrow I = \log 2\left[ x \right]_0^{\dfrac{\pi }{2}}\]
\[ \Rightarrow I = \log 2\left[ {\dfrac{\pi }{2} - 0} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\log 2\]
Thus, \[\int\limits_0^{\dfrac{\pi }{2}} {x\cos xdx} = \dfrac{\pi }{2}\log 2\]
Option ‘B’ is correct
Note: Students get confused and try to solve the integral \[\int {\log \sin xdx} \] by using the formula \[\int {\log x = x\left( {\log x - 1} \right)} \] . Because of that, they get the wrong answer.
Formula Used:Integration by parts formula: \[\int {f\left( x \right)} g\left( x \right)dx = f\left( x \right)\int {g\left( x \right)} dx - \int {\left[ {\dfrac{d}{{dx}}f\left( x \right)\int {g\left( x \right)dx} } \right]} dx\]
\[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\]
\[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
\[\log \left( a \right) + \log \left( b \right) = \log \left( {ab} \right)\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
\[\sin 2x = 2\sin x\cos x\]
\[\int {\cot xdx = \log \sin x} \]
Complete step by step solution:The given definite integral is \[\int\limits_0^{\dfrac{\pi }{2}} {x\cot x} dx\].
Let consider,
\[I = \int\limits_0^{\dfrac{\pi }{2}} {x\cot x} dx\]
Now solve the integral by the integration by parts formula \[\int {f\left( x \right)} g\left( x \right)dx = f\left( x \right)\int {g\left( x \right)} dx - \int {\left[ {\dfrac{d}{{dx}}f\left( x \right)\int {g\left( x \right)dx} } \right]} dx\]
\[I = \left[ {x\int {\cot xdx} } \right]_0^{\dfrac{\pi }{2}} - \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{d}{{dx}}x\int {\cot xdx} } \right]} dx\]
\[ \Rightarrow I = \left[ {x\log \sin x} \right]_0^{\dfrac{\pi }{2}} - \int\limits_0^{\dfrac{\pi }{2}} {\left[ {1 \times \log \sin x} \right]} dx\]
\[ \Rightarrow I = \left[ {\dfrac{\pi }{2}\log \sin \dfrac{\pi }{2} - 0\log \sin 0} \right] - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin x} dx\]
\[ \Rightarrow I = \left[ {\dfrac{\pi }{2}\log 1 - 0} \right] - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin x} dx\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left( 0 \right) - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin x} dx\]
\[ \Rightarrow I = - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin x} dx\] \[.....\left( 1 \right)\]
Now apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\].
\[ \Rightarrow I = - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin \left( {\dfrac{\pi }{2} - x} \right)dx} \]
\[ \Rightarrow I = - \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} \] \[.....\left( 2 \right)\]
Add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[ \Rightarrow I + I = - \left[ {\int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} + \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} } \right]\]
Apply the sum rule of integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx} + \int\limits_a^b {g\left( x \right)dx} \].
\[ \Rightarrow 2I = - \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin x + \log \cos x} \right]dx} \]
Apply the sum property of the logarithm \[\log \left( a \right) + \log \left( b \right) = \log \left( {ab} \right)\] .
\[ \Rightarrow 2I = - \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin x\cos x} \right]dx} \]
\[ \Rightarrow 2I = - \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{2\sin x\cos x}}{2}} \right)dx} \]
\[ \Rightarrow 2I = - \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{\sin 2x}}{2}} \right)dx} \]
Apply the quotient property of logarithm \[\log \left( {\dfrac{a}{b}} \right) = \log \left( a \right) - \log \left( b \right)\]
\[ \Rightarrow 2I = - \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{\sin 2x}}{2}} \right)dx} \]
\[ \Rightarrow 2I = - \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin 2x - \log 2} \right]dx} \]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin 2xdx} \]
\[ \Rightarrow 2I = \log 2\int\limits_0^{\dfrac{\pi }{2}} {dx} - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin 2xdx} \] \[.....\left( 3 \right)\]
Now substitute \[2x = u\] in the first integral.
Then, \[dx = \dfrac{{du}}{2}\]
The limits changed as follows:
As \[x \to 0\], then \[u \to 0\]
As \[x \to \dfrac{\pi }{2}\], then \[u \to \pi \]
Substitute the values in the equation \[\left( 3 \right)\].
\[2I = \log 2\int\limits_0^{\dfrac{\pi }{2}} {dx} - \dfrac{1}{2}\int\limits_0^\pi {\log \sin udu} \]
Apply the integration rule \[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\].
\[2I = \log 2\int\limits_0^{\dfrac{\pi }{2}} {dx} - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin udu} \]
From equation \[\left( 1 \right)\], we get \[I = - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin udu} \].
\[2I = \log 2\int\limits_0^{\dfrac{\pi }{2}} {dx} + I\]
\[ \Rightarrow I = \log 2\left[ x \right]_0^{\dfrac{\pi }{2}}\]
\[ \Rightarrow I = \log 2\left[ {\dfrac{\pi }{2} - 0} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\log 2\]
Thus, \[\int\limits_0^{\dfrac{\pi }{2}} {x\cos xdx} = \dfrac{\pi }{2}\log 2\]
Option ‘B’ is correct
Note: Students get confused and try to solve the integral \[\int {\log \sin xdx} \] by using the formula \[\int {\log x = x\left( {\log x - 1} \right)} \] . Because of that, they get the wrong answer.
Recently Updated Pages
Fluid Pressure - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Impulse Momentum Theorem Important Concepts and Tips for JEE

Graphical Methods of Vector Addition - Important Concepts for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NEET 2025 – Every New Update You Need to Know

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

NEET Total Marks 2025

1 Billion in Rupees
