
What is the value of the definite integral \[\int\limits_0^{2a} {\dfrac{{f\left( x \right)}}{{f\left( x \right) + f\left( {2a - x} \right)}}} dx\]?
A. \[a\]
B. \[\dfrac{a}{2}\]
C. \[2a\]
D. 0
Answer
164.1k+ views
Hint: Here, a definite integral is given. First, simplify the integral by using the integration rule \[\int\limits_0^a {f\left( x \right)dx = } \int\limits_0^a {f\left( {a - x} \right)dx} \]. Then, add both integrals and simplify the equation. After that, solve the integrals using the integration formula. In the end, apply the upper and lower limits and solve the equation to get the required answer.
Formula Used:\[\int\limits_0^a {f\left( x \right)dx = } \int\limits_0^a {f\left( {a - x} \right)dx} \]
\[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_0^{2a} {\dfrac{{f\left( x \right)}}{{f\left( x \right) + f\left( {2a - x} \right)}}} dx\].
Let consider,
\[I = \int\limits_0^{2a} {\dfrac{{f\left( x \right)}}{{f\left( x \right) + f\left( {2a - x} \right)}}} dx\] \[.....\left( 1 \right)\]
Apply the integration rule \[\int\limits_0^a {f\left( x \right)dx = } \int\limits_0^a {f\left( {a - x} \right)dx} \].
\[I = \int\limits_0^{2a} {\dfrac{{f\left( {2a - x} \right)}}{{f\left( {2a - x} \right) + f\left( {2a - \left( {2a - x} \right)} \right)}}} dx\]
\[I = \int\limits_0^{2a} {\dfrac{{f\left( {2a - x} \right)}}{{f\left( {2a - x} \right) + f\left( x \right)}}} dx\] \[.....\left( 2 \right)\]
Add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\]
\[I + I = \int\limits_0^{2a} {\dfrac{{f\left( x \right)}}{{f\left( x \right) + f\left( {2a - x} \right)}}} dx + \int\limits_0^{2a} {\dfrac{{f\left( {2a - x} \right)}}{{f\left( {2a - x} \right) + f\left( x \right)}}} dx\]
\[ \Rightarrow 2I = \int\limits_0^{2a} {\left[ {\dfrac{{f\left( x \right)}}{{f\left( x \right) + f\left( {2a - x} \right)}} + \dfrac{{f\left( {2a - x} \right)}}{{f\left( {2a - x} \right) + f\left( x \right)}}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_0^{2a} {\left[ {\dfrac{{f\left( x \right) + f\left( {2a - x} \right)}}{{f\left( x \right) + f\left( {2a - x} \right)}}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_0^{2a} 1 dx\]
Solve the integral by using the integration formula \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\].
\[ \Rightarrow 2I = \left[ x \right]_0^{2a}\]
Apply the limits.
\[ \Rightarrow 2I = 2a - 0\]
\[ \Rightarrow 2I = 2a\]
\[ \Rightarrow I = a\]
Thus, \[\int\limits_0^{2a} {\dfrac{{f\left( x \right)}}{{f\left( x \right) + f\left( {2a - x} \right)}}} dx = a\].
Option ‘A’ is correct
Note: The integration rule \[\int\limits_0^a {f\left( x \right)dx = } \int\limits_0^a {f\left( {a - x} \right)dx} \] is obtained from another integration rule \[\int\limits_a^b {f\left( x \right)dx = } \int\limits_a^b {f\left( {a + b - x} \right)dx} \]. So, we can also apply this rule to solve the given integral.
Formula Used:\[\int\limits_0^a {f\left( x \right)dx = } \int\limits_0^a {f\left( {a - x} \right)dx} \]
\[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_0^{2a} {\dfrac{{f\left( x \right)}}{{f\left( x \right) + f\left( {2a - x} \right)}}} dx\].
Let consider,
\[I = \int\limits_0^{2a} {\dfrac{{f\left( x \right)}}{{f\left( x \right) + f\left( {2a - x} \right)}}} dx\] \[.....\left( 1 \right)\]
Apply the integration rule \[\int\limits_0^a {f\left( x \right)dx = } \int\limits_0^a {f\left( {a - x} \right)dx} \].
\[I = \int\limits_0^{2a} {\dfrac{{f\left( {2a - x} \right)}}{{f\left( {2a - x} \right) + f\left( {2a - \left( {2a - x} \right)} \right)}}} dx\]
\[I = \int\limits_0^{2a} {\dfrac{{f\left( {2a - x} \right)}}{{f\left( {2a - x} \right) + f\left( x \right)}}} dx\] \[.....\left( 2 \right)\]
Add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\]
\[I + I = \int\limits_0^{2a} {\dfrac{{f\left( x \right)}}{{f\left( x \right) + f\left( {2a - x} \right)}}} dx + \int\limits_0^{2a} {\dfrac{{f\left( {2a - x} \right)}}{{f\left( {2a - x} \right) + f\left( x \right)}}} dx\]
\[ \Rightarrow 2I = \int\limits_0^{2a} {\left[ {\dfrac{{f\left( x \right)}}{{f\left( x \right) + f\left( {2a - x} \right)}} + \dfrac{{f\left( {2a - x} \right)}}{{f\left( {2a - x} \right) + f\left( x \right)}}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_0^{2a} {\left[ {\dfrac{{f\left( x \right) + f\left( {2a - x} \right)}}{{f\left( x \right) + f\left( {2a - x} \right)}}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_0^{2a} 1 dx\]
Solve the integral by using the integration formula \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\].
\[ \Rightarrow 2I = \left[ x \right]_0^{2a}\]
Apply the limits.
\[ \Rightarrow 2I = 2a - 0\]
\[ \Rightarrow 2I = 2a\]
\[ \Rightarrow I = a\]
Thus, \[\int\limits_0^{2a} {\dfrac{{f\left( x \right)}}{{f\left( x \right) + f\left( {2a - x} \right)}}} dx = a\].
Option ‘A’ is correct
Note: The integration rule \[\int\limits_0^a {f\left( x \right)dx = } \int\limits_0^a {f\left( {a - x} \right)dx} \] is obtained from another integration rule \[\int\limits_a^b {f\left( x \right)dx = } \int\limits_a^b {f\left( {a + b - x} \right)dx} \]. So, we can also apply this rule to solve the given integral.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

GFTI Colleges in India - List, Ranking & Admission Details

Other Pages
JEE Advanced 2025 Notes

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?
