
What is the value of the definite integral \[\int\limits_0^1 {\dfrac{{\log x}}{{\sqrt {1 - {x^2}} }}} dx\]?
A. \[\dfrac{\pi }{2}\log 2\]
B. \[\pi \log 2\]
C. \[ - \dfrac{\pi }{2}\log 2\]
D. \[ - \pi \log 2\]
Answer
216.6k+ views
Hint: Here, a definite integral is given. First, substitute \[x = \sin \theta \] in the given integral and simplify it. Then, calculate the new limits of the integral. After that, apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\] and simplify the integral. Then, add both simplified integrals and solve them using the u-substitution method and trigonometric properties. In the end, apply the limits and get the required answer.
Formula Used:\[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
\[\log \left( a \right) + \log \left( b \right) = \log \left( {ab} \right)\]
\[\log \left( {\dfrac{a}{b}} \right) = \log \left( a \right) - \log \left( b \right)\]
\[\sin 2x = 2\sin x\cos x\]
\[{\sin ^2}x + {\cos ^2}x = 1\]
\[\int\limits_a^b {ndx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_0^1 {\dfrac{{\log x}}{{\sqrt {1 - {x^2}} }}} dx\].
Let consider,
\[I = \int\limits_0^1 {\dfrac{{\log x}}{{\sqrt {1 - {x^2}} }}} dx\] \[.....\left( 1 \right)\]
Substitute \[x = \sin \theta \] in the above integral.
Differentiate the substituted equation.
\[dx = \cos \theta d\theta \]
Now calculate the now limits of the integral.
At \[x = 0\]:
\[\theta = {\sin ^{ - 1}}x\]
\[ \Rightarrow \theta = {\sin ^{ - 1}}0\]
\[ \Rightarrow \theta = 0\]
At \[x = 1\]:
\[\theta = {\sin ^{ - 1}}x\]
\[ \Rightarrow \theta = {\sin ^{ - 1}}1\]
\[ \Rightarrow \theta = \dfrac{\pi }{2}\]
Substitute the values in the equation \[\left( 1 \right)\].
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\log \sin \theta }}{{\sqrt {1 - {{\sin }^2}\theta } }}} \cos \theta d\theta \]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\log \sin \theta }}{{\sqrt {{{\cos }^2}\theta } }}} \cos \theta d\theta \]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\log \sin \theta }}{{\cos \theta }}} \cos \theta d\theta \]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin \theta } d\theta \] \[.....\left( 2 \right)\]
Now apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\].
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin \left( {\dfrac{\pi }{2} - \theta } \right)d\theta } \]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\log \cos \theta d\theta } \] \[.....\left( 3 \right)\]
Add the equations \[\left( 2 \right)\] and \[\left( 3 \right)\].
\[ \Rightarrow I + I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin \theta d\theta } + \int\limits_0^{\dfrac{\pi }{2}} {\log \cos \theta d\theta } \]
Apply the sum rule of integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx} + \int\limits_a^b {g\left( x \right)dx} \].
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin \theta + \log \cos \theta } \right]d\theta } \]
Apply the sum property of the logarithm \[\log \left( a \right) + \log \left( b \right) = \log \left( {ab} \right)\] .
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin \theta \cos \theta } \right]d\theta } \]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{2\sin \theta \cos \theta }}{2}} \right)d\theta } \]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{\sin 2\theta }}{2}} \right)d\theta } \]
Apply the quotient property of logarithm \[\log \left( {\dfrac{a}{b}} \right) = \log \left( a \right) - \log \left( b \right)\]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{\sin 2\theta }}{2}} \right)d\theta } \]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin 2\theta - \log 2} \right]d\theta } \]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin 2\theta d\theta } - \int\limits_0^{\dfrac{\pi }{2}} {\log 2d\theta } \]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin 2\theta d\theta } - \log 2\int\limits_0^{\dfrac{\pi }{2}} {d\theta } \] \[.....\left( 4 \right)\]
Now substitute \[2\theta = u\] in the first integral.
Then, \[d\theta = \dfrac{{du}}{2}\]
The limits changed as follows:
As \[\theta \to 0\], then \[u \to 0\]
As \[\theta \to \dfrac{\pi }{2}\], then \[u \to \pi \]
Substitute the values in the equation \[\left( 4 \right)\].
\[2I = \dfrac{1}{2}\int\limits_0^\pi {\log \sin udu} - \log 2\int\limits_0^{\dfrac{\pi }{2}} {d\theta } \]
Apply the integration rule \[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\].
\[2I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin udu} - \log 2\int\limits_0^{\dfrac{\pi }{2}} {d\theta } \]
From equation \[\left( 2 \right)\], we get \[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin udu} \].
\[2I = I - \log 2\int\limits_0^{\dfrac{\pi }{2}} {d\theta } \]
\[ \Rightarrow I = - \log 2\left[ \theta \right]_0^{\dfrac{\pi }{2}}\]
\[ \Rightarrow I = - \log 2\left[ {\dfrac{\pi }{2} - 0} \right]\]
\[ \Rightarrow I = - \dfrac{\pi }{2}\log 2\]
Thus, \[\int\limits_0^1 {\dfrac{{\log x}}{{\sqrt {1 - {x^2}} }}} dx = - \dfrac{\pi }{2}\log 2\].
Option ‘C’ is correct
Note: Students get confused and try to solve the integral \[\int {\log \sin xdx} \] by using the formula \[\int {\log x = x\left( {\log x - 1} \right)} \] . Because of that, they get the wrong answer.
Formula Used:\[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
\[\log \left( a \right) + \log \left( b \right) = \log \left( {ab} \right)\]
\[\log \left( {\dfrac{a}{b}} \right) = \log \left( a \right) - \log \left( b \right)\]
\[\sin 2x = 2\sin x\cos x\]
\[{\sin ^2}x + {\cos ^2}x = 1\]
\[\int\limits_a^b {ndx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_0^1 {\dfrac{{\log x}}{{\sqrt {1 - {x^2}} }}} dx\].
Let consider,
\[I = \int\limits_0^1 {\dfrac{{\log x}}{{\sqrt {1 - {x^2}} }}} dx\] \[.....\left( 1 \right)\]
Substitute \[x = \sin \theta \] in the above integral.
Differentiate the substituted equation.
\[dx = \cos \theta d\theta \]
Now calculate the now limits of the integral.
At \[x = 0\]:
\[\theta = {\sin ^{ - 1}}x\]
\[ \Rightarrow \theta = {\sin ^{ - 1}}0\]
\[ \Rightarrow \theta = 0\]
At \[x = 1\]:
\[\theta = {\sin ^{ - 1}}x\]
\[ \Rightarrow \theta = {\sin ^{ - 1}}1\]
\[ \Rightarrow \theta = \dfrac{\pi }{2}\]
Substitute the values in the equation \[\left( 1 \right)\].
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\log \sin \theta }}{{\sqrt {1 - {{\sin }^2}\theta } }}} \cos \theta d\theta \]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\log \sin \theta }}{{\sqrt {{{\cos }^2}\theta } }}} \cos \theta d\theta \]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\log \sin \theta }}{{\cos \theta }}} \cos \theta d\theta \]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin \theta } d\theta \] \[.....\left( 2 \right)\]
Now apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\].
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin \left( {\dfrac{\pi }{2} - \theta } \right)d\theta } \]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\log \cos \theta d\theta } \] \[.....\left( 3 \right)\]
Add the equations \[\left( 2 \right)\] and \[\left( 3 \right)\].
\[ \Rightarrow I + I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin \theta d\theta } + \int\limits_0^{\dfrac{\pi }{2}} {\log \cos \theta d\theta } \]
Apply the sum rule of integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx} + \int\limits_a^b {g\left( x \right)dx} \].
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin \theta + \log \cos \theta } \right]d\theta } \]
Apply the sum property of the logarithm \[\log \left( a \right) + \log \left( b \right) = \log \left( {ab} \right)\] .
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin \theta \cos \theta } \right]d\theta } \]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{2\sin \theta \cos \theta }}{2}} \right)d\theta } \]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{\sin 2\theta }}{2}} \right)d\theta } \]
Apply the quotient property of logarithm \[\log \left( {\dfrac{a}{b}} \right) = \log \left( a \right) - \log \left( b \right)\]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{\sin 2\theta }}{2}} \right)d\theta } \]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin 2\theta - \log 2} \right]d\theta } \]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin 2\theta d\theta } - \int\limits_0^{\dfrac{\pi }{2}} {\log 2d\theta } \]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin 2\theta d\theta } - \log 2\int\limits_0^{\dfrac{\pi }{2}} {d\theta } \] \[.....\left( 4 \right)\]
Now substitute \[2\theta = u\] in the first integral.
Then, \[d\theta = \dfrac{{du}}{2}\]
The limits changed as follows:
As \[\theta \to 0\], then \[u \to 0\]
As \[\theta \to \dfrac{\pi }{2}\], then \[u \to \pi \]
Substitute the values in the equation \[\left( 4 \right)\].
\[2I = \dfrac{1}{2}\int\limits_0^\pi {\log \sin udu} - \log 2\int\limits_0^{\dfrac{\pi }{2}} {d\theta } \]
Apply the integration rule \[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\].
\[2I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin udu} - \log 2\int\limits_0^{\dfrac{\pi }{2}} {d\theta } \]
From equation \[\left( 2 \right)\], we get \[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin udu} \].
\[2I = I - \log 2\int\limits_0^{\dfrac{\pi }{2}} {d\theta } \]
\[ \Rightarrow I = - \log 2\left[ \theta \right]_0^{\dfrac{\pi }{2}}\]
\[ \Rightarrow I = - \log 2\left[ {\dfrac{\pi }{2} - 0} \right]\]
\[ \Rightarrow I = - \dfrac{\pi }{2}\log 2\]
Thus, \[\int\limits_0^1 {\dfrac{{\log x}}{{\sqrt {1 - {x^2}} }}} dx = - \dfrac{\pi }{2}\log 2\].
Option ‘C’ is correct
Note: Students get confused and try to solve the integral \[\int {\log \sin xdx} \] by using the formula \[\int {\log x = x\left( {\log x - 1} \right)} \] . Because of that, they get the wrong answer.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

