
What is the value of the definite integral \[\int\limits_0^1 {\dfrac{{\log x}}{{\sqrt {1 - {x^2}} }}} dx\]?
A. \[\dfrac{\pi }{2}\log 2\]
B. \[\pi \log 2\]
C. \[ - \dfrac{\pi }{2}\log 2\]
D. \[ - \pi \log 2\]
Answer
232.8k+ views
Hint: Here, a definite integral is given. First, substitute \[x = \sin \theta \] in the given integral and simplify it. Then, calculate the new limits of the integral. After that, apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\] and simplify the integral. Then, add both simplified integrals and solve them using the u-substitution method and trigonometric properties. In the end, apply the limits and get the required answer.
Formula Used:\[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
\[\log \left( a \right) + \log \left( b \right) = \log \left( {ab} \right)\]
\[\log \left( {\dfrac{a}{b}} \right) = \log \left( a \right) - \log \left( b \right)\]
\[\sin 2x = 2\sin x\cos x\]
\[{\sin ^2}x + {\cos ^2}x = 1\]
\[\int\limits_a^b {ndx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_0^1 {\dfrac{{\log x}}{{\sqrt {1 - {x^2}} }}} dx\].
Let consider,
\[I = \int\limits_0^1 {\dfrac{{\log x}}{{\sqrt {1 - {x^2}} }}} dx\] \[.....\left( 1 \right)\]
Substitute \[x = \sin \theta \] in the above integral.
Differentiate the substituted equation.
\[dx = \cos \theta d\theta \]
Now calculate the now limits of the integral.
At \[x = 0\]:
\[\theta = {\sin ^{ - 1}}x\]
\[ \Rightarrow \theta = {\sin ^{ - 1}}0\]
\[ \Rightarrow \theta = 0\]
At \[x = 1\]:
\[\theta = {\sin ^{ - 1}}x\]
\[ \Rightarrow \theta = {\sin ^{ - 1}}1\]
\[ \Rightarrow \theta = \dfrac{\pi }{2}\]
Substitute the values in the equation \[\left( 1 \right)\].
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\log \sin \theta }}{{\sqrt {1 - {{\sin }^2}\theta } }}} \cos \theta d\theta \]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\log \sin \theta }}{{\sqrt {{{\cos }^2}\theta } }}} \cos \theta d\theta \]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\log \sin \theta }}{{\cos \theta }}} \cos \theta d\theta \]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin \theta } d\theta \] \[.....\left( 2 \right)\]
Now apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\].
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin \left( {\dfrac{\pi }{2} - \theta } \right)d\theta } \]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\log \cos \theta d\theta } \] \[.....\left( 3 \right)\]
Add the equations \[\left( 2 \right)\] and \[\left( 3 \right)\].
\[ \Rightarrow I + I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin \theta d\theta } + \int\limits_0^{\dfrac{\pi }{2}} {\log \cos \theta d\theta } \]
Apply the sum rule of integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx} + \int\limits_a^b {g\left( x \right)dx} \].
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin \theta + \log \cos \theta } \right]d\theta } \]
Apply the sum property of the logarithm \[\log \left( a \right) + \log \left( b \right) = \log \left( {ab} \right)\] .
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin \theta \cos \theta } \right]d\theta } \]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{2\sin \theta \cos \theta }}{2}} \right)d\theta } \]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{\sin 2\theta }}{2}} \right)d\theta } \]
Apply the quotient property of logarithm \[\log \left( {\dfrac{a}{b}} \right) = \log \left( a \right) - \log \left( b \right)\]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{\sin 2\theta }}{2}} \right)d\theta } \]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin 2\theta - \log 2} \right]d\theta } \]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin 2\theta d\theta } - \int\limits_0^{\dfrac{\pi }{2}} {\log 2d\theta } \]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin 2\theta d\theta } - \log 2\int\limits_0^{\dfrac{\pi }{2}} {d\theta } \] \[.....\left( 4 \right)\]
Now substitute \[2\theta = u\] in the first integral.
Then, \[d\theta = \dfrac{{du}}{2}\]
The limits changed as follows:
As \[\theta \to 0\], then \[u \to 0\]
As \[\theta \to \dfrac{\pi }{2}\], then \[u \to \pi \]
Substitute the values in the equation \[\left( 4 \right)\].
\[2I = \dfrac{1}{2}\int\limits_0^\pi {\log \sin udu} - \log 2\int\limits_0^{\dfrac{\pi }{2}} {d\theta } \]
Apply the integration rule \[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\].
\[2I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin udu} - \log 2\int\limits_0^{\dfrac{\pi }{2}} {d\theta } \]
From equation \[\left( 2 \right)\], we get \[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin udu} \].
\[2I = I - \log 2\int\limits_0^{\dfrac{\pi }{2}} {d\theta } \]
\[ \Rightarrow I = - \log 2\left[ \theta \right]_0^{\dfrac{\pi }{2}}\]
\[ \Rightarrow I = - \log 2\left[ {\dfrac{\pi }{2} - 0} \right]\]
\[ \Rightarrow I = - \dfrac{\pi }{2}\log 2\]
Thus, \[\int\limits_0^1 {\dfrac{{\log x}}{{\sqrt {1 - {x^2}} }}} dx = - \dfrac{\pi }{2}\log 2\].
Option ‘C’ is correct
Note: Students get confused and try to solve the integral \[\int {\log \sin xdx} \] by using the formula \[\int {\log x = x\left( {\log x - 1} \right)} \] . Because of that, they get the wrong answer.
Formula Used:\[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
\[\log \left( a \right) + \log \left( b \right) = \log \left( {ab} \right)\]
\[\log \left( {\dfrac{a}{b}} \right) = \log \left( a \right) - \log \left( b \right)\]
\[\sin 2x = 2\sin x\cos x\]
\[{\sin ^2}x + {\cos ^2}x = 1\]
\[\int\limits_a^b {ndx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_0^1 {\dfrac{{\log x}}{{\sqrt {1 - {x^2}} }}} dx\].
Let consider,
\[I = \int\limits_0^1 {\dfrac{{\log x}}{{\sqrt {1 - {x^2}} }}} dx\] \[.....\left( 1 \right)\]
Substitute \[x = \sin \theta \] in the above integral.
Differentiate the substituted equation.
\[dx = \cos \theta d\theta \]
Now calculate the now limits of the integral.
At \[x = 0\]:
\[\theta = {\sin ^{ - 1}}x\]
\[ \Rightarrow \theta = {\sin ^{ - 1}}0\]
\[ \Rightarrow \theta = 0\]
At \[x = 1\]:
\[\theta = {\sin ^{ - 1}}x\]
\[ \Rightarrow \theta = {\sin ^{ - 1}}1\]
\[ \Rightarrow \theta = \dfrac{\pi }{2}\]
Substitute the values in the equation \[\left( 1 \right)\].
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\log \sin \theta }}{{\sqrt {1 - {{\sin }^2}\theta } }}} \cos \theta d\theta \]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\log \sin \theta }}{{\sqrt {{{\cos }^2}\theta } }}} \cos \theta d\theta \]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\log \sin \theta }}{{\cos \theta }}} \cos \theta d\theta \]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin \theta } d\theta \] \[.....\left( 2 \right)\]
Now apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\].
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin \left( {\dfrac{\pi }{2} - \theta } \right)d\theta } \]
\[ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\log \cos \theta d\theta } \] \[.....\left( 3 \right)\]
Add the equations \[\left( 2 \right)\] and \[\left( 3 \right)\].
\[ \Rightarrow I + I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin \theta d\theta } + \int\limits_0^{\dfrac{\pi }{2}} {\log \cos \theta d\theta } \]
Apply the sum rule of integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx} + \int\limits_a^b {g\left( x \right)dx} \].
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin \theta + \log \cos \theta } \right]d\theta } \]
Apply the sum property of the logarithm \[\log \left( a \right) + \log \left( b \right) = \log \left( {ab} \right)\] .
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin \theta \cos \theta } \right]d\theta } \]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{2\sin \theta \cos \theta }}{2}} \right)d\theta } \]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{\sin 2\theta }}{2}} \right)d\theta } \]
Apply the quotient property of logarithm \[\log \left( {\dfrac{a}{b}} \right) = \log \left( a \right) - \log \left( b \right)\]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{\sin 2\theta }}{2}} \right)d\theta } \]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin 2\theta - \log 2} \right]d\theta } \]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin 2\theta d\theta } - \int\limits_0^{\dfrac{\pi }{2}} {\log 2d\theta } \]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin 2\theta d\theta } - \log 2\int\limits_0^{\dfrac{\pi }{2}} {d\theta } \] \[.....\left( 4 \right)\]
Now substitute \[2\theta = u\] in the first integral.
Then, \[d\theta = \dfrac{{du}}{2}\]
The limits changed as follows:
As \[\theta \to 0\], then \[u \to 0\]
As \[\theta \to \dfrac{\pi }{2}\], then \[u \to \pi \]
Substitute the values in the equation \[\left( 4 \right)\].
\[2I = \dfrac{1}{2}\int\limits_0^\pi {\log \sin udu} - \log 2\int\limits_0^{\dfrac{\pi }{2}} {d\theta } \]
Apply the integration rule \[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\].
\[2I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin udu} - \log 2\int\limits_0^{\dfrac{\pi }{2}} {d\theta } \]
From equation \[\left( 2 \right)\], we get \[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin udu} \].
\[2I = I - \log 2\int\limits_0^{\dfrac{\pi }{2}} {d\theta } \]
\[ \Rightarrow I = - \log 2\left[ \theta \right]_0^{\dfrac{\pi }{2}}\]
\[ \Rightarrow I = - \log 2\left[ {\dfrac{\pi }{2} - 0} \right]\]
\[ \Rightarrow I = - \dfrac{\pi }{2}\log 2\]
Thus, \[\int\limits_0^1 {\dfrac{{\log x}}{{\sqrt {1 - {x^2}} }}} dx = - \dfrac{\pi }{2}\log 2\].
Option ‘C’ is correct
Note: Students get confused and try to solve the integral \[\int {\log \sin xdx} \] by using the formula \[\int {\log x = x\left( {\log x - 1} \right)} \] . Because of that, they get the wrong answer.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

