
What is the value of the definite integral \[\int\limits_{ - a}^a {\sin xf\left( {\cos x} \right)dx} \]?
A. \[2\int\limits_0^a {\sin xf\left( {\cos x} \right)dx} \]
B. 0
C. 1
D. None of these
Answer
161.7k+ views
Hint: Here, a definite integral is given. First, check whether the function present in the given integral is odd or an even function. If the function is odd, then apply the property of the definite integral for the odd function. If the function is even, then apply the property of the definite integral for the even function and solve the integral to get the required answer.
Formula Used:\[\int\limits_{ - a}^a {f\left( x \right) dx} = 0\], if the function \[f\left( x \right)\] is an odd function. Means, \[f\left( { - x} \right) = - f\left( x \right)\]
\[\int\limits_{ - a}^a {f\left( x \right) dx} = 2\int\limits_0^a {f\left( x \right) dx} \], if the function \[f\left( x \right)\] is an even function. Means, \[f\left( { - x} \right) = f\left( x \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_{ - a}^a {\sin xf\left( {\cos x} \right)dx} \].
Let consider,
\[g\left( x \right) = \sin xf\left( {\cos x} \right)\]
Now let’s calculate the value of \[g\left( { - x} \right)\].
\[g\left( { - x} \right) = \sin \left( { - x} \right)f\left( {\cos \left( { - x} \right)} \right)\]
Apply the trigonometric properties \[\sin \left( { - \theta } \right) = - \sin \theta \] and \[\cos \left( { - \theta } \right) = \cos \theta \].
\[ \Rightarrow g\left( { - x} \right) = - \sin f\left( {\cos x} \right)\]
\[ \Rightarrow g\left( { - x} \right) = - g\left( x \right)\]
Therefore, \[g\left( x \right) = \sin xf\left( {\cos x} \right)\] is an odd function.
Now apply the property of the definite integral \[\int\limits_{ - a}^a {f\left( x \right) dx} = 0\], if the function \[f\left( x \right)\] is an odd function.
We get,
\[\int\limits_{ - a}^a {\sin xf\left( {\cos x} \right)dx} = 0\]
Option ‘B’ is correct
Note: Sometimes students get confused and try to solve the integral by using the trigonometric identities. We can solve this integral by using the methods of indefinite integral. But the answer will be wrong.
So, to calculate the correct answer in the definite integral, first check whether the given trigonometric function is odd or even.
Formula Used:\[\int\limits_{ - a}^a {f\left( x \right) dx} = 0\], if the function \[f\left( x \right)\] is an odd function. Means, \[f\left( { - x} \right) = - f\left( x \right)\]
\[\int\limits_{ - a}^a {f\left( x \right) dx} = 2\int\limits_0^a {f\left( x \right) dx} \], if the function \[f\left( x \right)\] is an even function. Means, \[f\left( { - x} \right) = f\left( x \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_{ - a}^a {\sin xf\left( {\cos x} \right)dx} \].
Let consider,
\[g\left( x \right) = \sin xf\left( {\cos x} \right)\]
Now let’s calculate the value of \[g\left( { - x} \right)\].
\[g\left( { - x} \right) = \sin \left( { - x} \right)f\left( {\cos \left( { - x} \right)} \right)\]
Apply the trigonometric properties \[\sin \left( { - \theta } \right) = - \sin \theta \] and \[\cos \left( { - \theta } \right) = \cos \theta \].
\[ \Rightarrow g\left( { - x} \right) = - \sin f\left( {\cos x} \right)\]
\[ \Rightarrow g\left( { - x} \right) = - g\left( x \right)\]
Therefore, \[g\left( x \right) = \sin xf\left( {\cos x} \right)\] is an odd function.
Now apply the property of the definite integral \[\int\limits_{ - a}^a {f\left( x \right) dx} = 0\], if the function \[f\left( x \right)\] is an odd function.
We get,
\[\int\limits_{ - a}^a {\sin xf\left( {\cos x} \right)dx} = 0\]
Option ‘B’ is correct
Note: Sometimes students get confused and try to solve the integral by using the trigonometric identities. We can solve this integral by using the methods of indefinite integral. But the answer will be wrong.
So, to calculate the correct answer in the definite integral, first check whether the given trigonometric function is odd or even.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main Eligibility Criteria 2025

NIT Delhi Cut-Off 2025 - Check Expected and Previous Year Cut-Offs

JEE Main Seat Allotment 2025: How to Check, Documents Required and Fees Structure

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

NIT Durgapur JEE Main Cut-Off 2025 - Check Expected & Previous Year Cut-Offs

JEE Main 2024 Cut-off for NIT Surathkal

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes

List of Fastest Century in IPL History

Verb Forms Guide: V1, V2, V3, V4, V5 Explained
