
What is the value of k when $f\left( x \right) = \left[ {\dfrac{{k\sin x + 2cosx}}{{\sin x + \cos x}}} \right]$ when the function $x$when $f(x)$is increasing?
A. k < 1
B. k > 1
C. k < 2
D. k > 2
Answer
162.3k+ views
Hint: Given function is a rational function. First, find the first ordered derivative of the function. Then calculate for which value of k, the value of the first ordered derivative greater than zero.
Formula Used:
$\dfrac{d}{{dx}}\left( {\dfrac{{u(x)}}{{v(x)}}} \right) = \dfrac{{v(x) \times \dfrac{d}{{dx}}u(x) - u(x) \times \dfrac{d}{{dx}}v(x)}}{{{{\left( {v(x)} \right)}^2}}}$
$({\cos ^2}x + {\sin ^2}x) = 1$
Complete step by step solution:
Given:
$f\left( x \right) = \left[ {\dfrac{{k{\rm{ sin}}x + 2{\rm{ cos }}x}}{{\sin x + \cos x}}} \right]$
$f'(x) > 0$,
We get,
$f'(x) = \dfrac{{K\sin x + 2\cos x}}{{\sin x + \cos x}}$
Differentiating both sides,
$f'(x) = \dfrac{{(K\cos x - 2\sin x)(\sin x + \cos x) - (\cos x - \sin x)(K\sin x + 2\cos x)}}{{{{(\sin x + \cos x)}^2}}}$
$f'(x) = \dfrac{{K\sin x\cos x + K{{\cos }^2}x + K{{\cos }^2}x - 2{{\sin }^2}x - 2\sin x\cos x - K\sin x\cos x - 2{{\cos }^2}x + K{{\sin }^2}x + 2\sin x\cos x}}{{{{(\sin x + \cos x)}^2}}}$
$f'(x) = \dfrac{{(K\cos x - 2\sin x)(\sin x + \cos x) - (\cos x - \sin x)(K\sin x + 2\cos x)}}{{{{(\sin x + \cos x)}^2}}}$
Further solving the above equation by expanding and removing the brackets,
$f'(x) = \dfrac{{K\sin x\cos x + K{{\cos }^2}x + K{{\cos }^2}x - 2{{\sin }^2}x - 2\sin x\cos x - K\sin x\cos x - 2{{\cos }^2}x + K{{\sin }^2}x + 2\sin x\cos x}}{{{{(\sin x + \cos x)}^2}}}$
Cancel out all the necessary terms to get the equation below,
$f'(x) = \dfrac{{K{{\cos }^2}x + K{{\sin }^2}x - 2{{\cos }^2}x - 2{{\sin }^2}x}}{{{{(\sin x + \cos x)}^2}}}$
Taking all the common terms we get,
$f'(x) = \dfrac{{K({{\cos }^2}x + {{\sin }^2}x) - 2({{\sin }^2}x + {{\cos }^2}x)}}{{{{(\sin x + \cos x)}^2}}}$
Using formula $({\cos ^2}x + {\sin ^2}x) = 1$, we get
$f'(x) = \dfrac{{K - 2}}{{{{(\sin x + \cos x)}^2}}}$
Now, as $f'(x) > 0$
$f'(x) = \dfrac{{K - 2}}{{{{(\sin x + \cos x)}^2}}} > 0$
Sending the denominator to RHS,
$K - 2 > 0$
$K > 2$
Option ‘D’ is correct
Note: A function is increasing in the interval $\left(a,b\right)$ if $f’\left(x\right)>0]$ in the interval $\left(a,b\right)$. So that we need to find the first ordered derivative of the given function. Then find the condition where $f’\left(x\right)>0]$ to calculate the value of k.
Formula Used:
$\dfrac{d}{{dx}}\left( {\dfrac{{u(x)}}{{v(x)}}} \right) = \dfrac{{v(x) \times \dfrac{d}{{dx}}u(x) - u(x) \times \dfrac{d}{{dx}}v(x)}}{{{{\left( {v(x)} \right)}^2}}}$
$({\cos ^2}x + {\sin ^2}x) = 1$
Complete step by step solution:
Given:
$f\left( x \right) = \left[ {\dfrac{{k{\rm{ sin}}x + 2{\rm{ cos }}x}}{{\sin x + \cos x}}} \right]$
$f'(x) > 0$,
We get,
$f'(x) = \dfrac{{K\sin x + 2\cos x}}{{\sin x + \cos x}}$
Differentiating both sides,
$f'(x) = \dfrac{{(K\cos x - 2\sin x)(\sin x + \cos x) - (\cos x - \sin x)(K\sin x + 2\cos x)}}{{{{(\sin x + \cos x)}^2}}}$
$f'(x) = \dfrac{{K\sin x\cos x + K{{\cos }^2}x + K{{\cos }^2}x - 2{{\sin }^2}x - 2\sin x\cos x - K\sin x\cos x - 2{{\cos }^2}x + K{{\sin }^2}x + 2\sin x\cos x}}{{{{(\sin x + \cos x)}^2}}}$
$f'(x) = \dfrac{{(K\cos x - 2\sin x)(\sin x + \cos x) - (\cos x - \sin x)(K\sin x + 2\cos x)}}{{{{(\sin x + \cos x)}^2}}}$
Further solving the above equation by expanding and removing the brackets,
$f'(x) = \dfrac{{K\sin x\cos x + K{{\cos }^2}x + K{{\cos }^2}x - 2{{\sin }^2}x - 2\sin x\cos x - K\sin x\cos x - 2{{\cos }^2}x + K{{\sin }^2}x + 2\sin x\cos x}}{{{{(\sin x + \cos x)}^2}}}$
Cancel out all the necessary terms to get the equation below,
$f'(x) = \dfrac{{K{{\cos }^2}x + K{{\sin }^2}x - 2{{\cos }^2}x - 2{{\sin }^2}x}}{{{{(\sin x + \cos x)}^2}}}$
Taking all the common terms we get,
$f'(x) = \dfrac{{K({{\cos }^2}x + {{\sin }^2}x) - 2({{\sin }^2}x + {{\cos }^2}x)}}{{{{(\sin x + \cos x)}^2}}}$
Using formula $({\cos ^2}x + {\sin ^2}x) = 1$, we get
$f'(x) = \dfrac{{K - 2}}{{{{(\sin x + \cos x)}^2}}}$
Now, as $f'(x) > 0$
$f'(x) = \dfrac{{K - 2}}{{{{(\sin x + \cos x)}^2}}} > 0$
Sending the denominator to RHS,
$K - 2 > 0$
$K > 2$
Option ‘D’ is correct
Note: A function is increasing in the interval $\left(a,b\right)$ if $f’\left(x\right)>0]$ in the interval $\left(a,b\right)$. So that we need to find the first ordered derivative of the given function. Then find the condition where $f’\left(x\right)>0]$ to calculate the value of k.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
