
What is the value of k when $f\left( x \right) = \left[ {\dfrac{{k\sin x + 2cosx}}{{\sin x + \cos x}}} \right]$ when the function $x$when $f(x)$is increasing?
A. k < 1
B. k > 1
C. k < 2
D. k > 2
Answer
217.2k+ views
Hint: Given function is a rational function. First, find the first ordered derivative of the function. Then calculate for which value of k, the value of the first ordered derivative greater than zero.
Formula Used:
$\dfrac{d}{{dx}}\left( {\dfrac{{u(x)}}{{v(x)}}} \right) = \dfrac{{v(x) \times \dfrac{d}{{dx}}u(x) - u(x) \times \dfrac{d}{{dx}}v(x)}}{{{{\left( {v(x)} \right)}^2}}}$
$({\cos ^2}x + {\sin ^2}x) = 1$
Complete step by step solution:
Given:
$f\left( x \right) = \left[ {\dfrac{{k{\rm{ sin}}x + 2{\rm{ cos }}x}}{{\sin x + \cos x}}} \right]$
$f'(x) > 0$,
We get,
$f'(x) = \dfrac{{K\sin x + 2\cos x}}{{\sin x + \cos x}}$
Differentiating both sides,
$f'(x) = \dfrac{{(K\cos x - 2\sin x)(\sin x + \cos x) - (\cos x - \sin x)(K\sin x + 2\cos x)}}{{{{(\sin x + \cos x)}^2}}}$
$f'(x) = \dfrac{{K\sin x\cos x + K{{\cos }^2}x + K{{\cos }^2}x - 2{{\sin }^2}x - 2\sin x\cos x - K\sin x\cos x - 2{{\cos }^2}x + K{{\sin }^2}x + 2\sin x\cos x}}{{{{(\sin x + \cos x)}^2}}}$
$f'(x) = \dfrac{{(K\cos x - 2\sin x)(\sin x + \cos x) - (\cos x - \sin x)(K\sin x + 2\cos x)}}{{{{(\sin x + \cos x)}^2}}}$
Further solving the above equation by expanding and removing the brackets,
$f'(x) = \dfrac{{K\sin x\cos x + K{{\cos }^2}x + K{{\cos }^2}x - 2{{\sin }^2}x - 2\sin x\cos x - K\sin x\cos x - 2{{\cos }^2}x + K{{\sin }^2}x + 2\sin x\cos x}}{{{{(\sin x + \cos x)}^2}}}$
Cancel out all the necessary terms to get the equation below,
$f'(x) = \dfrac{{K{{\cos }^2}x + K{{\sin }^2}x - 2{{\cos }^2}x - 2{{\sin }^2}x}}{{{{(\sin x + \cos x)}^2}}}$
Taking all the common terms we get,
$f'(x) = \dfrac{{K({{\cos }^2}x + {{\sin }^2}x) - 2({{\sin }^2}x + {{\cos }^2}x)}}{{{{(\sin x + \cos x)}^2}}}$
Using formula $({\cos ^2}x + {\sin ^2}x) = 1$, we get
$f'(x) = \dfrac{{K - 2}}{{{{(\sin x + \cos x)}^2}}}$
Now, as $f'(x) > 0$
$f'(x) = \dfrac{{K - 2}}{{{{(\sin x + \cos x)}^2}}} > 0$
Sending the denominator to RHS,
$K - 2 > 0$
$K > 2$
Option ‘D’ is correct
Note: A function is increasing in the interval $\left(a,b\right)$ if $f’\left(x\right)>0]$ in the interval $\left(a,b\right)$. So that we need to find the first ordered derivative of the given function. Then find the condition where $f’\left(x\right)>0]$ to calculate the value of k.
Formula Used:
$\dfrac{d}{{dx}}\left( {\dfrac{{u(x)}}{{v(x)}}} \right) = \dfrac{{v(x) \times \dfrac{d}{{dx}}u(x) - u(x) \times \dfrac{d}{{dx}}v(x)}}{{{{\left( {v(x)} \right)}^2}}}$
$({\cos ^2}x + {\sin ^2}x) = 1$
Complete step by step solution:
Given:
$f\left( x \right) = \left[ {\dfrac{{k{\rm{ sin}}x + 2{\rm{ cos }}x}}{{\sin x + \cos x}}} \right]$
$f'(x) > 0$,
We get,
$f'(x) = \dfrac{{K\sin x + 2\cos x}}{{\sin x + \cos x}}$
Differentiating both sides,
$f'(x) = \dfrac{{(K\cos x - 2\sin x)(\sin x + \cos x) - (\cos x - \sin x)(K\sin x + 2\cos x)}}{{{{(\sin x + \cos x)}^2}}}$
$f'(x) = \dfrac{{K\sin x\cos x + K{{\cos }^2}x + K{{\cos }^2}x - 2{{\sin }^2}x - 2\sin x\cos x - K\sin x\cos x - 2{{\cos }^2}x + K{{\sin }^2}x + 2\sin x\cos x}}{{{{(\sin x + \cos x)}^2}}}$
$f'(x) = \dfrac{{(K\cos x - 2\sin x)(\sin x + \cos x) - (\cos x - \sin x)(K\sin x + 2\cos x)}}{{{{(\sin x + \cos x)}^2}}}$
Further solving the above equation by expanding and removing the brackets,
$f'(x) = \dfrac{{K\sin x\cos x + K{{\cos }^2}x + K{{\cos }^2}x - 2{{\sin }^2}x - 2\sin x\cos x - K\sin x\cos x - 2{{\cos }^2}x + K{{\sin }^2}x + 2\sin x\cos x}}{{{{(\sin x + \cos x)}^2}}}$
Cancel out all the necessary terms to get the equation below,
$f'(x) = \dfrac{{K{{\cos }^2}x + K{{\sin }^2}x - 2{{\cos }^2}x - 2{{\sin }^2}x}}{{{{(\sin x + \cos x)}^2}}}$
Taking all the common terms we get,
$f'(x) = \dfrac{{K({{\cos }^2}x + {{\sin }^2}x) - 2({{\sin }^2}x + {{\cos }^2}x)}}{{{{(\sin x + \cos x)}^2}}}$
Using formula $({\cos ^2}x + {\sin ^2}x) = 1$, we get
$f'(x) = \dfrac{{K - 2}}{{{{(\sin x + \cos x)}^2}}}$
Now, as $f'(x) > 0$
$f'(x) = \dfrac{{K - 2}}{{{{(\sin x + \cos x)}^2}}} > 0$
Sending the denominator to RHS,
$K - 2 > 0$
$K > 2$
Option ‘D’ is correct
Note: A function is increasing in the interval $\left(a,b\right)$ if $f’\left(x\right)>0]$ in the interval $\left(a,b\right)$. So that we need to find the first ordered derivative of the given function. Then find the condition where $f’\left(x\right)>0]$ to calculate the value of k.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

