
What is the value of \[\int\limits_0^{2a} {f\left( x \right)dx} \]?
A. \[2\int_0^a {f\left( x \right)dx} \]
B. 0
C. \[\int\limits_0^a {f\left( x \right)dx} + \int\limits_0^a {f\left( {2a - x} \right)dx} \]
D. \[\int\limits_0^a {f\left( x \right)dx} + \int\limits_0^{2a} {f\left( {2a - x} \right)dx} \]
Answer
164.1k+ views
Hint: First we will apply the definite integral property that is \[\int_b^a {f\left( x \right)dx} = \int_b^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} \]. They we apply substitution method in the second integration and replace the variable with x to get required result.
Formula Used:The property of definite integration:
\[\int_b^a {f\left( x \right)dx} = \int_b^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} \], where \[b < c < a\].
\[\int_b^a {f\left( u \right)du} = \int_b^a {f\left( x \right)dx} \]
Complete step by step solution:The given definite integration is \[\int\limits_0^{2a} {f\left( x \right)dx} \].
We know that \[0 < a < 2a\]
Now applying the property of the definite integration \[\int_b^a {f\left( x \right)dx} = \int_b^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} \]:
Assume that \[b = 0\], \[c = a\], \[a = 2a\]:
\[\int\limits_0^{2a} {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} + \int\limits_a^{2a} {f\left( x \right)dx} \] …..(i)
Assume that, \[x = 2a - u\]
Differentiate both sides with respect to x:
\[dx = - du\]
When \[x = a\], then \[a = 2a - u \Rightarrow u = a\]
When \[x = 2a\], then \[2a = 2a - u \Rightarrow u = 0\]
Now applying substitution method in the second integration of (i)
\[\int\limits_0^{2a} {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} - \int\limits_a^0 {f\left( {2a - u} \right)du} \]
Now applying the property \[\int_b^a {f\left( x \right)dx} = - \int_a^b {f\left( x \right)dx} \]:
\[\int\limits_0^{2a} {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} + \int\limits_0^a {f\left( {2a - u} \right)du} \]
Now replacing u by x:
\[\int\limits_0^{2a} {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} + \int\limits_0^a {f\left( {2a - x} \right)dx} \]
Option ‘C’ is correct
Note: Students often stuck in the step \[\int\limits_0^{2a} {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} + \int\limits_0^a {f\left( {2a - u} \right)du} \]. They forgot about the property \[\int_b^a {f\left( u \right)du} = \int_b^a {f\left( x \right)dx} \]. This means we can replace a variable. We replace the variable u with x of the definite integration \[\int\limits_0^{2a} {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} + \int\limits_0^a {f\left( {2a - u} \right)du} \].
Formula Used:The property of definite integration:
\[\int_b^a {f\left( x \right)dx} = \int_b^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} \], where \[b < c < a\].
\[\int_b^a {f\left( u \right)du} = \int_b^a {f\left( x \right)dx} \]
Complete step by step solution:The given definite integration is \[\int\limits_0^{2a} {f\left( x \right)dx} \].
We know that \[0 < a < 2a\]
Now applying the property of the definite integration \[\int_b^a {f\left( x \right)dx} = \int_b^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} \]:
Assume that \[b = 0\], \[c = a\], \[a = 2a\]:
\[\int\limits_0^{2a} {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} + \int\limits_a^{2a} {f\left( x \right)dx} \] …..(i)
Assume that, \[x = 2a - u\]
Differentiate both sides with respect to x:
\[dx = - du\]
When \[x = a\], then \[a = 2a - u \Rightarrow u = a\]
When \[x = 2a\], then \[2a = 2a - u \Rightarrow u = 0\]
Now applying substitution method in the second integration of (i)
\[\int\limits_0^{2a} {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} - \int\limits_a^0 {f\left( {2a - u} \right)du} \]
Now applying the property \[\int_b^a {f\left( x \right)dx} = - \int_a^b {f\left( x \right)dx} \]:
\[\int\limits_0^{2a} {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} + \int\limits_0^a {f\left( {2a - u} \right)du} \]
Now replacing u by x:
\[\int\limits_0^{2a} {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} + \int\limits_0^a {f\left( {2a - x} \right)dx} \]
Option ‘C’ is correct
Note: Students often stuck in the step \[\int\limits_0^{2a} {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} + \int\limits_0^a {f\left( {2a - u} \right)du} \]. They forgot about the property \[\int_b^a {f\left( u \right)du} = \int_b^a {f\left( x \right)dx} \]. This means we can replace a variable. We replace the variable u with x of the definite integration \[\int\limits_0^{2a} {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} + \int\limits_0^a {f\left( {2a - u} \right)du} \].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Advanced 2025 Notes
