
What is the value of \[\int\limits_0^{2a} {f\left( x \right)dx} \]?
A. \[2\int_0^a {f\left( x \right)dx} \]
B. 0
C. \[\int\limits_0^a {f\left( x \right)dx} + \int\limits_0^a {f\left( {2a - x} \right)dx} \]
D. \[\int\limits_0^a {f\left( x \right)dx} + \int\limits_0^{2a} {f\left( {2a - x} \right)dx} \]
Answer
164.1k+ views
Hint: First we will apply the definite integral property that is \[\int_b^a {f\left( x \right)dx} = \int_b^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} \]. They we apply substitution method in the second integration and replace the variable with x to get required result.
Formula Used:The property of definite integration:
\[\int_b^a {f\left( x \right)dx} = \int_b^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} \], where \[b < c < a\].
\[\int_b^a {f\left( u \right)du} = \int_b^a {f\left( x \right)dx} \]
Complete step by step solution:The given definite integration is \[\int\limits_0^{2a} {f\left( x \right)dx} \].
We know that \[0 < a < 2a\]
Now applying the property of the definite integration \[\int_b^a {f\left( x \right)dx} = \int_b^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} \]:
Assume that \[b = 0\], \[c = a\], \[a = 2a\]:
\[\int\limits_0^{2a} {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} + \int\limits_a^{2a} {f\left( x \right)dx} \] …..(i)
Assume that, \[x = 2a - u\]
Differentiate both sides with respect to x:
\[dx = - du\]
When \[x = a\], then \[a = 2a - u \Rightarrow u = a\]
When \[x = 2a\], then \[2a = 2a - u \Rightarrow u = 0\]
Now applying substitution method in the second integration of (i)
\[\int\limits_0^{2a} {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} - \int\limits_a^0 {f\left( {2a - u} \right)du} \]
Now applying the property \[\int_b^a {f\left( x \right)dx} = - \int_a^b {f\left( x \right)dx} \]:
\[\int\limits_0^{2a} {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} + \int\limits_0^a {f\left( {2a - u} \right)du} \]
Now replacing u by x:
\[\int\limits_0^{2a} {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} + \int\limits_0^a {f\left( {2a - x} \right)dx} \]
Option ‘C’ is correct
Note: Students often stuck in the step \[\int\limits_0^{2a} {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} + \int\limits_0^a {f\left( {2a - u} \right)du} \]. They forgot about the property \[\int_b^a {f\left( u \right)du} = \int_b^a {f\left( x \right)dx} \]. This means we can replace a variable. We replace the variable u with x of the definite integration \[\int\limits_0^{2a} {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} + \int\limits_0^a {f\left( {2a - u} \right)du} \].
Formula Used:The property of definite integration:
\[\int_b^a {f\left( x \right)dx} = \int_b^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} \], where \[b < c < a\].
\[\int_b^a {f\left( u \right)du} = \int_b^a {f\left( x \right)dx} \]
Complete step by step solution:The given definite integration is \[\int\limits_0^{2a} {f\left( x \right)dx} \].
We know that \[0 < a < 2a\]
Now applying the property of the definite integration \[\int_b^a {f\left( x \right)dx} = \int_b^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} \]:
Assume that \[b = 0\], \[c = a\], \[a = 2a\]:
\[\int\limits_0^{2a} {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} + \int\limits_a^{2a} {f\left( x \right)dx} \] …..(i)
Assume that, \[x = 2a - u\]
Differentiate both sides with respect to x:
\[dx = - du\]
When \[x = a\], then \[a = 2a - u \Rightarrow u = a\]
When \[x = 2a\], then \[2a = 2a - u \Rightarrow u = 0\]
Now applying substitution method in the second integration of (i)
\[\int\limits_0^{2a} {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} - \int\limits_a^0 {f\left( {2a - u} \right)du} \]
Now applying the property \[\int_b^a {f\left( x \right)dx} = - \int_a^b {f\left( x \right)dx} \]:
\[\int\limits_0^{2a} {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} + \int\limits_0^a {f\left( {2a - u} \right)du} \]
Now replacing u by x:
\[\int\limits_0^{2a} {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} + \int\limits_0^a {f\left( {2a - x} \right)dx} \]
Option ‘C’ is correct
Note: Students often stuck in the step \[\int\limits_0^{2a} {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} + \int\limits_0^a {f\left( {2a - u} \right)du} \]. They forgot about the property \[\int_b^a {f\left( u \right)du} = \int_b^a {f\left( x \right)dx} \]. This means we can replace a variable. We replace the variable u with x of the definite integration \[\int\limits_0^{2a} {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} + \int\limits_0^a {f\left( {2a - u} \right)du} \].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
