
What is the value of \[\int_{{e^{ - 1}}}^{{e^2}} {\left| {\dfrac{{{{\log }_e}x}}{x}} \right|} dx\]?
A. \[\dfrac{3}{2}\]
B. \[\dfrac{5}{2}\]
C. 3
D. 5
Answer
217.5k+ views
Hint: First we will break the integration interval by positive and negative values of \[\dfrac{{{{\log }_e}x}}{x}\]. Then we will use the substitution method. Integrate it to find the value of the integration.
Formula Used:Definite integration:
\[\int_b^a {f\left( x \right)dx} = \int_b^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} \], where \[b < c < a\]
Integration formula:
\[\int {xdx} = \dfrac{{{x^2}}}{2} + c\]
Complete step by step solution:Given definite integral is \[\int_{{e^{ - 1}}}^{{e^2}} {\left| {\dfrac{{{{\log }_e}x}}{x}} \right|} dx\].
Assume that, \[I = \int_{{e^{ - 1}}}^{{e^2}} {\left| {\dfrac{{{{\log }_e}x}}{x}} \right|} dx\].
We know that, when \[0 < x < 1\], \[{\log _e}x < 0\]
When \[x > 1\], \[{\log _e}x > 0\]
So that \[{e^{ - 1}} < x < 1\] implies \[{\log _e}x < 0\].
When \[1 < x < {e^2}\], \[{\log _e}x > 0\]
Applying the property \[\int_b^a {f\left( x \right)dx} = \int_b^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} \] in the integration:
Here \[a = {e^2}\], \[b = {e^{ - 1}}\], and c = 1
\[I = \int_{{e^{ - 1}}}^{{e^2}} {\left| {\dfrac{{{{\log }_e}x}}{x}} \right|} dx\]
\[ \Rightarrow I = \int_{{e^{ - 1}}}^1 { - \dfrac{{{{\log }_e}x}}{x}} dx + \int_1^{{e^2}} {\dfrac{{{{\log }_e}x}}{x}} dx\] ……(i)
Assume that, \[{\log _e}x = z\]
Differentiate with respect to x:
\[\dfrac{1}{x}dx = dz\]
When \[x = {e^{ - 1}}\], \[z = {\log _e}{e^{ - 1}} = - 1\]
When \[x = 1\], \[z = {\log _e}1 = 0\]
When \[x = {e^2}\], \[z = {\log _e}{e^2} = 2\]
Substitute \[\dfrac{1}{x}dx = dz\] and \[{\log _e}x = z\] and also change the limit in (i)
\[ \Rightarrow I = \int_{ - 1}^0 { - zdz} + \int_0^2 {zdz} \]
\[ \Rightarrow I = - \left[ {\dfrac{{{z^2}}}{2}} \right]_{ - 1}^0 + \left[ {\dfrac{{{z^2}}}{2}} \right]_0^2\]
Now putting the limits:
\[ \Rightarrow I = - \left[ {\dfrac{{{0^2}}}{2} - \dfrac{{{{\left( { - 1} \right)}^2}}}{2}} \right] + \left[ {\dfrac{{{2^2}}}{2} - \dfrac{{{0^2}}}{2}} \right]\]
\[ \Rightarrow I = \dfrac{1}{2} + 2\]
\[ \Rightarrow I = \dfrac{5}{2}\]
Option ‘B’ is correct
Note: Students often mistake when they solve a definite integral using the substitution method. When they solve the integration \[I = \int_{{e^{ - 1}}}^1 { - \dfrac{{{{\log }_e}x}}{x}} dx + \int_1^{{e^2}} {\dfrac{{{{\log }_e}x}}{x}} dx\] by substitution method, they forgot to change the limits and solve \[I = \int_{{e^{ - 1}}}^1 { - zdz} + \int_1^{{e^2}} {zdz} \]. For this reason, they got incorrect answers. The correct integration is \[I = \int_{ - 1}^0 { - zdz} + \int_0^2 {zdz} \].
Formula Used:Definite integration:
\[\int_b^a {f\left( x \right)dx} = \int_b^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} \], where \[b < c < a\]
Integration formula:
\[\int {xdx} = \dfrac{{{x^2}}}{2} + c\]
Complete step by step solution:Given definite integral is \[\int_{{e^{ - 1}}}^{{e^2}} {\left| {\dfrac{{{{\log }_e}x}}{x}} \right|} dx\].
Assume that, \[I = \int_{{e^{ - 1}}}^{{e^2}} {\left| {\dfrac{{{{\log }_e}x}}{x}} \right|} dx\].
We know that, when \[0 < x < 1\], \[{\log _e}x < 0\]
When \[x > 1\], \[{\log _e}x > 0\]
So that \[{e^{ - 1}} < x < 1\] implies \[{\log _e}x < 0\].
When \[1 < x < {e^2}\], \[{\log _e}x > 0\]
Applying the property \[\int_b^a {f\left( x \right)dx} = \int_b^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} \] in the integration:
Here \[a = {e^2}\], \[b = {e^{ - 1}}\], and c = 1
\[I = \int_{{e^{ - 1}}}^{{e^2}} {\left| {\dfrac{{{{\log }_e}x}}{x}} \right|} dx\]
\[ \Rightarrow I = \int_{{e^{ - 1}}}^1 { - \dfrac{{{{\log }_e}x}}{x}} dx + \int_1^{{e^2}} {\dfrac{{{{\log }_e}x}}{x}} dx\] ……(i)
Assume that, \[{\log _e}x = z\]
Differentiate with respect to x:
\[\dfrac{1}{x}dx = dz\]
When \[x = {e^{ - 1}}\], \[z = {\log _e}{e^{ - 1}} = - 1\]
When \[x = 1\], \[z = {\log _e}1 = 0\]
When \[x = {e^2}\], \[z = {\log _e}{e^2} = 2\]
Substitute \[\dfrac{1}{x}dx = dz\] and \[{\log _e}x = z\] and also change the limit in (i)
\[ \Rightarrow I = \int_{ - 1}^0 { - zdz} + \int_0^2 {zdz} \]
\[ \Rightarrow I = - \left[ {\dfrac{{{z^2}}}{2}} \right]_{ - 1}^0 + \left[ {\dfrac{{{z^2}}}{2}} \right]_0^2\]
Now putting the limits:
\[ \Rightarrow I = - \left[ {\dfrac{{{0^2}}}{2} - \dfrac{{{{\left( { - 1} \right)}^2}}}{2}} \right] + \left[ {\dfrac{{{2^2}}}{2} - \dfrac{{{0^2}}}{2}} \right]\]
\[ \Rightarrow I = \dfrac{1}{2} + 2\]
\[ \Rightarrow I = \dfrac{5}{2}\]
Option ‘B’ is correct
Note: Students often mistake when they solve a definite integral using the substitution method. When they solve the integration \[I = \int_{{e^{ - 1}}}^1 { - \dfrac{{{{\log }_e}x}}{x}} dx + \int_1^{{e^2}} {\dfrac{{{{\log }_e}x}}{x}} dx\] by substitution method, they forgot to change the limits and solve \[I = \int_{{e^{ - 1}}}^1 { - zdz} + \int_1^{{e^2}} {zdz} \]. For this reason, they got incorrect answers. The correct integration is \[I = \int_{ - 1}^0 { - zdz} + \int_0^2 {zdz} \].
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

