
What is the value of \[\int_{{e^{ - 1}}}^{{e^2}} {\left| {\dfrac{{{{\log }_e}x}}{x}} \right|} dx\]?
A. \[\dfrac{3}{2}\]
B. \[\dfrac{5}{2}\]
C. 3
D. 5
Answer
163.2k+ views
Hint: First we will break the integration interval by positive and negative values of \[\dfrac{{{{\log }_e}x}}{x}\]. Then we will use the substitution method. Integrate it to find the value of the integration.
Formula Used:Definite integration:
\[\int_b^a {f\left( x \right)dx} = \int_b^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} \], where \[b < c < a\]
Integration formula:
\[\int {xdx} = \dfrac{{{x^2}}}{2} + c\]
Complete step by step solution:Given definite integral is \[\int_{{e^{ - 1}}}^{{e^2}} {\left| {\dfrac{{{{\log }_e}x}}{x}} \right|} dx\].
Assume that, \[I = \int_{{e^{ - 1}}}^{{e^2}} {\left| {\dfrac{{{{\log }_e}x}}{x}} \right|} dx\].
We know that, when \[0 < x < 1\], \[{\log _e}x < 0\]
When \[x > 1\], \[{\log _e}x > 0\]
So that \[{e^{ - 1}} < x < 1\] implies \[{\log _e}x < 0\].
When \[1 < x < {e^2}\], \[{\log _e}x > 0\]
Applying the property \[\int_b^a {f\left( x \right)dx} = \int_b^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} \] in the integration:
Here \[a = {e^2}\], \[b = {e^{ - 1}}\], and c = 1
\[I = \int_{{e^{ - 1}}}^{{e^2}} {\left| {\dfrac{{{{\log }_e}x}}{x}} \right|} dx\]
\[ \Rightarrow I = \int_{{e^{ - 1}}}^1 { - \dfrac{{{{\log }_e}x}}{x}} dx + \int_1^{{e^2}} {\dfrac{{{{\log }_e}x}}{x}} dx\] ……(i)
Assume that, \[{\log _e}x = z\]
Differentiate with respect to x:
\[\dfrac{1}{x}dx = dz\]
When \[x = {e^{ - 1}}\], \[z = {\log _e}{e^{ - 1}} = - 1\]
When \[x = 1\], \[z = {\log _e}1 = 0\]
When \[x = {e^2}\], \[z = {\log _e}{e^2} = 2\]
Substitute \[\dfrac{1}{x}dx = dz\] and \[{\log _e}x = z\] and also change the limit in (i)
\[ \Rightarrow I = \int_{ - 1}^0 { - zdz} + \int_0^2 {zdz} \]
\[ \Rightarrow I = - \left[ {\dfrac{{{z^2}}}{2}} \right]_{ - 1}^0 + \left[ {\dfrac{{{z^2}}}{2}} \right]_0^2\]
Now putting the limits:
\[ \Rightarrow I = - \left[ {\dfrac{{{0^2}}}{2} - \dfrac{{{{\left( { - 1} \right)}^2}}}{2}} \right] + \left[ {\dfrac{{{2^2}}}{2} - \dfrac{{{0^2}}}{2}} \right]\]
\[ \Rightarrow I = \dfrac{1}{2} + 2\]
\[ \Rightarrow I = \dfrac{5}{2}\]
Option ‘B’ is correct
Note: Students often mistake when they solve a definite integral using the substitution method. When they solve the integration \[I = \int_{{e^{ - 1}}}^1 { - \dfrac{{{{\log }_e}x}}{x}} dx + \int_1^{{e^2}} {\dfrac{{{{\log }_e}x}}{x}} dx\] by substitution method, they forgot to change the limits and solve \[I = \int_{{e^{ - 1}}}^1 { - zdz} + \int_1^{{e^2}} {zdz} \]. For this reason, they got incorrect answers. The correct integration is \[I = \int_{ - 1}^0 { - zdz} + \int_0^2 {zdz} \].
Formula Used:Definite integration:
\[\int_b^a {f\left( x \right)dx} = \int_b^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} \], where \[b < c < a\]
Integration formula:
\[\int {xdx} = \dfrac{{{x^2}}}{2} + c\]
Complete step by step solution:Given definite integral is \[\int_{{e^{ - 1}}}^{{e^2}} {\left| {\dfrac{{{{\log }_e}x}}{x}} \right|} dx\].
Assume that, \[I = \int_{{e^{ - 1}}}^{{e^2}} {\left| {\dfrac{{{{\log }_e}x}}{x}} \right|} dx\].
We know that, when \[0 < x < 1\], \[{\log _e}x < 0\]
When \[x > 1\], \[{\log _e}x > 0\]
So that \[{e^{ - 1}} < x < 1\] implies \[{\log _e}x < 0\].
When \[1 < x < {e^2}\], \[{\log _e}x > 0\]
Applying the property \[\int_b^a {f\left( x \right)dx} = \int_b^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} \] in the integration:
Here \[a = {e^2}\], \[b = {e^{ - 1}}\], and c = 1
\[I = \int_{{e^{ - 1}}}^{{e^2}} {\left| {\dfrac{{{{\log }_e}x}}{x}} \right|} dx\]
\[ \Rightarrow I = \int_{{e^{ - 1}}}^1 { - \dfrac{{{{\log }_e}x}}{x}} dx + \int_1^{{e^2}} {\dfrac{{{{\log }_e}x}}{x}} dx\] ……(i)
Assume that, \[{\log _e}x = z\]
Differentiate with respect to x:
\[\dfrac{1}{x}dx = dz\]
When \[x = {e^{ - 1}}\], \[z = {\log _e}{e^{ - 1}} = - 1\]
When \[x = 1\], \[z = {\log _e}1 = 0\]
When \[x = {e^2}\], \[z = {\log _e}{e^2} = 2\]
Substitute \[\dfrac{1}{x}dx = dz\] and \[{\log _e}x = z\] and also change the limit in (i)
\[ \Rightarrow I = \int_{ - 1}^0 { - zdz} + \int_0^2 {zdz} \]
\[ \Rightarrow I = - \left[ {\dfrac{{{z^2}}}{2}} \right]_{ - 1}^0 + \left[ {\dfrac{{{z^2}}}{2}} \right]_0^2\]
Now putting the limits:
\[ \Rightarrow I = - \left[ {\dfrac{{{0^2}}}{2} - \dfrac{{{{\left( { - 1} \right)}^2}}}{2}} \right] + \left[ {\dfrac{{{2^2}}}{2} - \dfrac{{{0^2}}}{2}} \right]\]
\[ \Rightarrow I = \dfrac{1}{2} + 2\]
\[ \Rightarrow I = \dfrac{5}{2}\]
Option ‘B’ is correct
Note: Students often mistake when they solve a definite integral using the substitution method. When they solve the integration \[I = \int_{{e^{ - 1}}}^1 { - \dfrac{{{{\log }_e}x}}{x}} dx + \int_1^{{e^2}} {\dfrac{{{{\log }_e}x}}{x}} dx\] by substitution method, they forgot to change the limits and solve \[I = \int_{{e^{ - 1}}}^1 { - zdz} + \int_1^{{e^2}} {zdz} \]. For this reason, they got incorrect answers. The correct integration is \[I = \int_{ - 1}^0 { - zdz} + \int_0^2 {zdz} \].
Recently Updated Pages
Fluid Pressure - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Impulse Momentum Theorem Important Concepts and Tips for JEE

Graphical Methods of Vector Addition - Important Concepts for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NEET 2025 – Every New Update You Need to Know

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

NEET Total Marks 2025

1 Billion in Rupees
