
What is the value of \[\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\cot x} }}} \]?
A. \[\dfrac{\pi }{3}\]
B. \[\dfrac{\pi }{6}\]
C. \[\dfrac{\pi }{{12}}\]
D. \[\dfrac{\pi }{2}\]
Answer
163.2k+ views
Hint: First we will rewrite \[\cot x\] as ratio \[\cos x\] and \[\sin x\]. Then simplify it. After that we will apply the property of definite integral that is \[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \] and add the original integration and the new integration that we get after applying the formula. Simplify the sum and integrate it to get the required answer.
Formula Used:Definite integral property:
\[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \]
Complementary formula of trigonometry:
\[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
\[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \]
Integration formula:
\[\int\limits_b^a {dx} = \left[ {a - b} \right]\]
Complete step by step solution:Given definite integral is \[\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\cot x} }}} \].
Assume that, \[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\cot x} }}} \]
Now we replace \[\cot x\] by \[\dfrac{{\cos x}}{{\sin x}}\]:
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\dfrac{{\cos x}}{{\sin x}}} }}} \]
Simplify the above expression:
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{\dfrac{{\sqrt {\sin x} + \sqrt {\cos x} }}{{\sqrt {\sin x} }}}}} \]
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\sin x} dx}}{{\sqrt {\sin x} + \sqrt {\cos x} }}} \] …….(i)
Now applying the property \[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \]:
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\sin \left( {\dfrac{\pi }{3} + \dfrac{\pi }{6} - x} \right)} dx}}{{\sqrt {\sin \left( {\dfrac{\pi }{3} + \dfrac{\pi }{6} - x} \right)} + \sqrt {\cos \left( {\dfrac{\pi }{3} + \dfrac{\pi }{6} - x} \right)} }}} \]
Add the like terms:
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\sin \left( {\dfrac{\pi }{2} - x} \right)} dx}}{{\sqrt {\sin \left( {\dfrac{\pi }{2} - x} \right)} + \sqrt {\cos \left( {\dfrac{\pi }{2} - x} \right)} }}} \]
Now applying the complementary formula of trigonometry:
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\cos x} dx}}{{\sqrt {\cos x} + \sqrt {\sin x} }}} \] …….(ii)
Now adding equation (i) and (ii)
\[I + I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\sin x} dx}}{{\sqrt {\sin x} + \sqrt {\cos x} }}} + \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\cos x} dx}}{{\sqrt {\cos x} + \sqrt {\sin x} }}} \]
\[ \Rightarrow 2I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\left( {\sqrt {\sin x} + \sqrt {\cos x} } \right)dx}}{{\left( {\sqrt {\sin x} + \sqrt {\cos x} } \right)}}} \]
Now cancel out common term from denominator and numerator:
\[ \Rightarrow 2I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {1dx} \]
\[ \Rightarrow 2I = \left( {\dfrac{\pi }{3} - \dfrac{\pi }{6}} \right)\]
\[ \Rightarrow 2I = \dfrac{\pi }{3}\]
Divide both sides by 2:
\[ \Rightarrow I = \dfrac{\pi }{6}\]
Option ‘B’ is correct
Note: Students often make mistake to solve the given question. They apply the property \[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \] in \[\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\cot x} }}} \] and stuck in the step. First we have replace \[\cot x\] by \[\dfrac{{\cos x}}{{\sin x}}\] and then apply the definite integral property.
Formula Used:Definite integral property:
\[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \]
Complementary formula of trigonometry:
\[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
\[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \]
Integration formula:
\[\int\limits_b^a {dx} = \left[ {a - b} \right]\]
Complete step by step solution:Given definite integral is \[\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\cot x} }}} \].
Assume that, \[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\cot x} }}} \]
Now we replace \[\cot x\] by \[\dfrac{{\cos x}}{{\sin x}}\]:
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\dfrac{{\cos x}}{{\sin x}}} }}} \]
Simplify the above expression:
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{\dfrac{{\sqrt {\sin x} + \sqrt {\cos x} }}{{\sqrt {\sin x} }}}}} \]
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\sin x} dx}}{{\sqrt {\sin x} + \sqrt {\cos x} }}} \] …….(i)
Now applying the property \[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \]:
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\sin \left( {\dfrac{\pi }{3} + \dfrac{\pi }{6} - x} \right)} dx}}{{\sqrt {\sin \left( {\dfrac{\pi }{3} + \dfrac{\pi }{6} - x} \right)} + \sqrt {\cos \left( {\dfrac{\pi }{3} + \dfrac{\pi }{6} - x} \right)} }}} \]
Add the like terms:
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\sin \left( {\dfrac{\pi }{2} - x} \right)} dx}}{{\sqrt {\sin \left( {\dfrac{\pi }{2} - x} \right)} + \sqrt {\cos \left( {\dfrac{\pi }{2} - x} \right)} }}} \]
Now applying the complementary formula of trigonometry:
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\cos x} dx}}{{\sqrt {\cos x} + \sqrt {\sin x} }}} \] …….(ii)
Now adding equation (i) and (ii)
\[I + I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\sin x} dx}}{{\sqrt {\sin x} + \sqrt {\cos x} }}} + \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\cos x} dx}}{{\sqrt {\cos x} + \sqrt {\sin x} }}} \]
\[ \Rightarrow 2I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\left( {\sqrt {\sin x} + \sqrt {\cos x} } \right)dx}}{{\left( {\sqrt {\sin x} + \sqrt {\cos x} } \right)}}} \]
Now cancel out common term from denominator and numerator:
\[ \Rightarrow 2I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {1dx} \]
\[ \Rightarrow 2I = \left( {\dfrac{\pi }{3} - \dfrac{\pi }{6}} \right)\]
\[ \Rightarrow 2I = \dfrac{\pi }{3}\]
Divide both sides by 2:
\[ \Rightarrow I = \dfrac{\pi }{6}\]
Option ‘B’ is correct
Note: Students often make mistake to solve the given question. They apply the property \[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \] in \[\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\cot x} }}} \] and stuck in the step. First we have replace \[\cot x\] by \[\dfrac{{\cos x}}{{\sin x}}\] and then apply the definite integral property.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NEET 2025 – Every New Update You Need to Know

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

NEET Total Marks 2025

1 Billion in Rupees
