
What is the value of \[\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\cot x} }}} \]?
A. \[\dfrac{\pi }{3}\]
B. \[\dfrac{\pi }{6}\]
C. \[\dfrac{\pi }{{12}}\]
D. \[\dfrac{\pi }{2}\]
Answer
217.5k+ views
Hint: First we will rewrite \[\cot x\] as ratio \[\cos x\] and \[\sin x\]. Then simplify it. After that we will apply the property of definite integral that is \[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \] and add the original integration and the new integration that we get after applying the formula. Simplify the sum and integrate it to get the required answer.
Formula Used:Definite integral property:
\[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \]
Complementary formula of trigonometry:
\[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
\[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \]
Integration formula:
\[\int\limits_b^a {dx} = \left[ {a - b} \right]\]
Complete step by step solution:Given definite integral is \[\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\cot x} }}} \].
Assume that, \[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\cot x} }}} \]
Now we replace \[\cot x\] by \[\dfrac{{\cos x}}{{\sin x}}\]:
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\dfrac{{\cos x}}{{\sin x}}} }}} \]
Simplify the above expression:
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{\dfrac{{\sqrt {\sin x} + \sqrt {\cos x} }}{{\sqrt {\sin x} }}}}} \]
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\sin x} dx}}{{\sqrt {\sin x} + \sqrt {\cos x} }}} \] …….(i)
Now applying the property \[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \]:
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\sin \left( {\dfrac{\pi }{3} + \dfrac{\pi }{6} - x} \right)} dx}}{{\sqrt {\sin \left( {\dfrac{\pi }{3} + \dfrac{\pi }{6} - x} \right)} + \sqrt {\cos \left( {\dfrac{\pi }{3} + \dfrac{\pi }{6} - x} \right)} }}} \]
Add the like terms:
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\sin \left( {\dfrac{\pi }{2} - x} \right)} dx}}{{\sqrt {\sin \left( {\dfrac{\pi }{2} - x} \right)} + \sqrt {\cos \left( {\dfrac{\pi }{2} - x} \right)} }}} \]
Now applying the complementary formula of trigonometry:
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\cos x} dx}}{{\sqrt {\cos x} + \sqrt {\sin x} }}} \] …….(ii)
Now adding equation (i) and (ii)
\[I + I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\sin x} dx}}{{\sqrt {\sin x} + \sqrt {\cos x} }}} + \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\cos x} dx}}{{\sqrt {\cos x} + \sqrt {\sin x} }}} \]
\[ \Rightarrow 2I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\left( {\sqrt {\sin x} + \sqrt {\cos x} } \right)dx}}{{\left( {\sqrt {\sin x} + \sqrt {\cos x} } \right)}}} \]
Now cancel out common term from denominator and numerator:
\[ \Rightarrow 2I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {1dx} \]
\[ \Rightarrow 2I = \left( {\dfrac{\pi }{3} - \dfrac{\pi }{6}} \right)\]
\[ \Rightarrow 2I = \dfrac{\pi }{3}\]
Divide both sides by 2:
\[ \Rightarrow I = \dfrac{\pi }{6}\]
Option ‘B’ is correct
Note: Students often make mistake to solve the given question. They apply the property \[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \] in \[\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\cot x} }}} \] and stuck in the step. First we have replace \[\cot x\] by \[\dfrac{{\cos x}}{{\sin x}}\] and then apply the definite integral property.
Formula Used:Definite integral property:
\[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \]
Complementary formula of trigonometry:
\[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
\[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \]
Integration formula:
\[\int\limits_b^a {dx} = \left[ {a - b} \right]\]
Complete step by step solution:Given definite integral is \[\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\cot x} }}} \].
Assume that, \[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\cot x} }}} \]
Now we replace \[\cot x\] by \[\dfrac{{\cos x}}{{\sin x}}\]:
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\dfrac{{\cos x}}{{\sin x}}} }}} \]
Simplify the above expression:
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{\dfrac{{\sqrt {\sin x} + \sqrt {\cos x} }}{{\sqrt {\sin x} }}}}} \]
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\sin x} dx}}{{\sqrt {\sin x} + \sqrt {\cos x} }}} \] …….(i)
Now applying the property \[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \]:
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\sin \left( {\dfrac{\pi }{3} + \dfrac{\pi }{6} - x} \right)} dx}}{{\sqrt {\sin \left( {\dfrac{\pi }{3} + \dfrac{\pi }{6} - x} \right)} + \sqrt {\cos \left( {\dfrac{\pi }{3} + \dfrac{\pi }{6} - x} \right)} }}} \]
Add the like terms:
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\sin \left( {\dfrac{\pi }{2} - x} \right)} dx}}{{\sqrt {\sin \left( {\dfrac{\pi }{2} - x} \right)} + \sqrt {\cos \left( {\dfrac{\pi }{2} - x} \right)} }}} \]
Now applying the complementary formula of trigonometry:
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\cos x} dx}}{{\sqrt {\cos x} + \sqrt {\sin x} }}} \] …….(ii)
Now adding equation (i) and (ii)
\[I + I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\sin x} dx}}{{\sqrt {\sin x} + \sqrt {\cos x} }}} + \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\cos x} dx}}{{\sqrt {\cos x} + \sqrt {\sin x} }}} \]
\[ \Rightarrow 2I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\left( {\sqrt {\sin x} + \sqrt {\cos x} } \right)dx}}{{\left( {\sqrt {\sin x} + \sqrt {\cos x} } \right)}}} \]
Now cancel out common term from denominator and numerator:
\[ \Rightarrow 2I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {1dx} \]
\[ \Rightarrow 2I = \left( {\dfrac{\pi }{3} - \dfrac{\pi }{6}} \right)\]
\[ \Rightarrow 2I = \dfrac{\pi }{3}\]
Divide both sides by 2:
\[ \Rightarrow I = \dfrac{\pi }{6}\]
Option ‘B’ is correct
Note: Students often make mistake to solve the given question. They apply the property \[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \] in \[\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\cot x} }}} \] and stuck in the step. First we have replace \[\cot x\] by \[\dfrac{{\cos x}}{{\sin x}}\] and then apply the definite integral property.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

