
What is the value of \[\int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx\]?
A.0
B.4
C.8
D.1
Answer
163.2k+ views
Hint: In solving the above question, we will use the definition of \[\left| {\sin x} \right| \], and according to that we will apply the upper limit and lower limit for the given function, and then by using the integration formula, we will get the desired result.
Formula used :
We will use definition of\[\left| {\sin x} \right| \], i.e.,\[\left| {\sin x} \right| \] is defined as,
\[\left| {\sin x} \right| = \sin x\] if \[\sin x \ge 0\], and \[\left| {\sin x} \right| = - \sin x\] if \[\sin x < 0\],
So, if we apply the integration it is defined as,
\[\int {\left| {\sin x} \right|} dx = \int {\sin x} dx\] if \[\sin x \ge 0\],i.e., in the limits of \[0\] to \[\pi \] and
\[\int {\left| {\sin x} \right|} dx = \int { - \sin x} dx\] if \[\sin x < 0\], i.e., in the limits \[\pi \] to \[2\pi \] and also, we will use integration formula,
\[\int {\sin xdx = - \cos x + c} \].
Complete Step-by- Step Solution:
Given \[\int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx\]
Now we will distribute the integration, then we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \int_0^{2\pi } {\sin x} dx + \int_0^{2\pi } {\left| {\sin x} \right|} dx\]
Now we will use the definition of\[\left| {\sin x} \right| \], i.e.,\[\left| {\sin x} \right| \] is defined as, then we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \int_0^{2\pi } {\sin x} dx + \int_0^\pi {\sin x} dx + \int_\pi ^{2\pi } { - \sin x} dx\]
Now we will simplify the expression we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \int_0^{2\pi } {\sin x} dx + \int_0^\pi {\sin x} dx - \int_\pi ^{2\pi } {\sin x} dx\]
Now we will apply integration formula, i.e, \[\int {\sin xdx = - \cos x + c} \], we will get
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \left[ { - \cos x} \right]_0^{2\pi } + \left[ { - \cos x} \right]_0^\pi - \left[ { - \cos x} \right]_\pi ^{2\pi }\]
Now we simplify the expression by applying the limits, we get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \left[ { - \cos 2\pi - \left( { - \cos 0} \right)} \right] + \left[ { - \cos \pi - \left( { - \cos 0} \right)} \right] - \left[ { - \cos 2\pi - \left( { - \cos \pi } \right)} \right]\]
Now we will simplify the expression we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \left[ { - \cos 2\pi + \cos 0} \right] + \left[ { - \cos \pi + \cos 0} \right] - \left[ { - \cos 2\pi + \cos \pi } \right]\]
Now we will use the trigonometric table values we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \left[ { - 1 + 1} \right] + \left[ { - \left( { - 1} \right) + 1} \right] - \left[ { - 1 + \left( { - 1} \right)} \right]\]
Now we will further simplify we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \left[ 0 \right] + \left[ {1 + 1} \right] - \left[ { - 1 - 1} \right]\]
Now we will further simplify we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = 2 - \left( { - 2} \right)\]
Now we will again simplify we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = 2 + 2\]
Now finally simplifying we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = 4\]
The correct option is B.
Note: Students make mistakes while separating modulus of sine function. We have four quadrants, named the first quadrant, second quadrant, third quadrant and fourth quadrant. For sine function the first and second quadrants are positive quadrants and the third and fourth quadrants are negative quadrants. So, in first and second quadrant, i.e., Between 0 to \[\pi \] sine function gives us positive value and in third and fourth quadrant, i.e., \[\pi \] to \[2\pi \] sine function gives negative values.
Formula used :
We will use definition of\[\left| {\sin x} \right| \], i.e.,\[\left| {\sin x} \right| \] is defined as,
\[\left| {\sin x} \right| = \sin x\] if \[\sin x \ge 0\], and \[\left| {\sin x} \right| = - \sin x\] if \[\sin x < 0\],
So, if we apply the integration it is defined as,
\[\int {\left| {\sin x} \right|} dx = \int {\sin x} dx\] if \[\sin x \ge 0\],i.e., in the limits of \[0\] to \[\pi \] and
\[\int {\left| {\sin x} \right|} dx = \int { - \sin x} dx\] if \[\sin x < 0\], i.e., in the limits \[\pi \] to \[2\pi \] and also, we will use integration formula,
\[\int {\sin xdx = - \cos x + c} \].
Complete Step-by- Step Solution:
Given \[\int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx\]
Now we will distribute the integration, then we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \int_0^{2\pi } {\sin x} dx + \int_0^{2\pi } {\left| {\sin x} \right|} dx\]
Now we will use the definition of\[\left| {\sin x} \right| \], i.e.,\[\left| {\sin x} \right| \] is defined as, then we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \int_0^{2\pi } {\sin x} dx + \int_0^\pi {\sin x} dx + \int_\pi ^{2\pi } { - \sin x} dx\]
Now we will simplify the expression we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \int_0^{2\pi } {\sin x} dx + \int_0^\pi {\sin x} dx - \int_\pi ^{2\pi } {\sin x} dx\]
Now we will apply integration formula, i.e, \[\int {\sin xdx = - \cos x + c} \], we will get
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \left[ { - \cos x} \right]_0^{2\pi } + \left[ { - \cos x} \right]_0^\pi - \left[ { - \cos x} \right]_\pi ^{2\pi }\]
Now we simplify the expression by applying the limits, we get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \left[ { - \cos 2\pi - \left( { - \cos 0} \right)} \right] + \left[ { - \cos \pi - \left( { - \cos 0} \right)} \right] - \left[ { - \cos 2\pi - \left( { - \cos \pi } \right)} \right]\]
Now we will simplify the expression we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \left[ { - \cos 2\pi + \cos 0} \right] + \left[ { - \cos \pi + \cos 0} \right] - \left[ { - \cos 2\pi + \cos \pi } \right]\]
Now we will use the trigonometric table values we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \left[ { - 1 + 1} \right] + \left[ { - \left( { - 1} \right) + 1} \right] - \left[ { - 1 + \left( { - 1} \right)} \right]\]
Now we will further simplify we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \left[ 0 \right] + \left[ {1 + 1} \right] - \left[ { - 1 - 1} \right]\]
Now we will further simplify we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = 2 - \left( { - 2} \right)\]
Now we will again simplify we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = 2 + 2\]
Now finally simplifying we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = 4\]
The correct option is B.
Note: Students make mistakes while separating modulus of sine function. We have four quadrants, named the first quadrant, second quadrant, third quadrant and fourth quadrant. For sine function the first and second quadrants are positive quadrants and the third and fourth quadrants are negative quadrants. So, in first and second quadrant, i.e., Between 0 to \[\pi \] sine function gives us positive value and in third and fourth quadrant, i.e., \[\pi \] to \[2\pi \] sine function gives negative values.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government and Private Medical Colleges
