
What is the value of \[\int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx\]?
A.0
B.4
C.8
D.1
Answer
232.8k+ views
Hint: In solving the above question, we will use the definition of \[\left| {\sin x} \right| \], and according to that we will apply the upper limit and lower limit for the given function, and then by using the integration formula, we will get the desired result.
Formula used :
We will use definition of\[\left| {\sin x} \right| \], i.e.,\[\left| {\sin x} \right| \] is defined as,
\[\left| {\sin x} \right| = \sin x\] if \[\sin x \ge 0\], and \[\left| {\sin x} \right| = - \sin x\] if \[\sin x < 0\],
So, if we apply the integration it is defined as,
\[\int {\left| {\sin x} \right|} dx = \int {\sin x} dx\] if \[\sin x \ge 0\],i.e., in the limits of \[0\] to \[\pi \] and
\[\int {\left| {\sin x} \right|} dx = \int { - \sin x} dx\] if \[\sin x < 0\], i.e., in the limits \[\pi \] to \[2\pi \] and also, we will use integration formula,
\[\int {\sin xdx = - \cos x + c} \].
Complete Step-by- Step Solution:
Given \[\int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx\]
Now we will distribute the integration, then we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \int_0^{2\pi } {\sin x} dx + \int_0^{2\pi } {\left| {\sin x} \right|} dx\]
Now we will use the definition of\[\left| {\sin x} \right| \], i.e.,\[\left| {\sin x} \right| \] is defined as, then we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \int_0^{2\pi } {\sin x} dx + \int_0^\pi {\sin x} dx + \int_\pi ^{2\pi } { - \sin x} dx\]
Now we will simplify the expression we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \int_0^{2\pi } {\sin x} dx + \int_0^\pi {\sin x} dx - \int_\pi ^{2\pi } {\sin x} dx\]
Now we will apply integration formula, i.e, \[\int {\sin xdx = - \cos x + c} \], we will get
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \left[ { - \cos x} \right]_0^{2\pi } + \left[ { - \cos x} \right]_0^\pi - \left[ { - \cos x} \right]_\pi ^{2\pi }\]
Now we simplify the expression by applying the limits, we get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \left[ { - \cos 2\pi - \left( { - \cos 0} \right)} \right] + \left[ { - \cos \pi - \left( { - \cos 0} \right)} \right] - \left[ { - \cos 2\pi - \left( { - \cos \pi } \right)} \right]\]
Now we will simplify the expression we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \left[ { - \cos 2\pi + \cos 0} \right] + \left[ { - \cos \pi + \cos 0} \right] - \left[ { - \cos 2\pi + \cos \pi } \right]\]
Now we will use the trigonometric table values we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \left[ { - 1 + 1} \right] + \left[ { - \left( { - 1} \right) + 1} \right] - \left[ { - 1 + \left( { - 1} \right)} \right]\]
Now we will further simplify we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \left[ 0 \right] + \left[ {1 + 1} \right] - \left[ { - 1 - 1} \right]\]
Now we will further simplify we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = 2 - \left( { - 2} \right)\]
Now we will again simplify we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = 2 + 2\]
Now finally simplifying we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = 4\]
The correct option is B.
Note: Students make mistakes while separating modulus of sine function. We have four quadrants, named the first quadrant, second quadrant, third quadrant and fourth quadrant. For sine function the first and second quadrants are positive quadrants and the third and fourth quadrants are negative quadrants. So, in first and second quadrant, i.e., Between 0 to \[\pi \] sine function gives us positive value and in third and fourth quadrant, i.e., \[\pi \] to \[2\pi \] sine function gives negative values.
Formula used :
We will use definition of\[\left| {\sin x} \right| \], i.e.,\[\left| {\sin x} \right| \] is defined as,
\[\left| {\sin x} \right| = \sin x\] if \[\sin x \ge 0\], and \[\left| {\sin x} \right| = - \sin x\] if \[\sin x < 0\],
So, if we apply the integration it is defined as,
\[\int {\left| {\sin x} \right|} dx = \int {\sin x} dx\] if \[\sin x \ge 0\],i.e., in the limits of \[0\] to \[\pi \] and
\[\int {\left| {\sin x} \right|} dx = \int { - \sin x} dx\] if \[\sin x < 0\], i.e., in the limits \[\pi \] to \[2\pi \] and also, we will use integration formula,
\[\int {\sin xdx = - \cos x + c} \].
Complete Step-by- Step Solution:
Given \[\int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx\]
Now we will distribute the integration, then we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \int_0^{2\pi } {\sin x} dx + \int_0^{2\pi } {\left| {\sin x} \right|} dx\]
Now we will use the definition of\[\left| {\sin x} \right| \], i.e.,\[\left| {\sin x} \right| \] is defined as, then we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \int_0^{2\pi } {\sin x} dx + \int_0^\pi {\sin x} dx + \int_\pi ^{2\pi } { - \sin x} dx\]
Now we will simplify the expression we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \int_0^{2\pi } {\sin x} dx + \int_0^\pi {\sin x} dx - \int_\pi ^{2\pi } {\sin x} dx\]
Now we will apply integration formula, i.e, \[\int {\sin xdx = - \cos x + c} \], we will get
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \left[ { - \cos x} \right]_0^{2\pi } + \left[ { - \cos x} \right]_0^\pi - \left[ { - \cos x} \right]_\pi ^{2\pi }\]
Now we simplify the expression by applying the limits, we get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \left[ { - \cos 2\pi - \left( { - \cos 0} \right)} \right] + \left[ { - \cos \pi - \left( { - \cos 0} \right)} \right] - \left[ { - \cos 2\pi - \left( { - \cos \pi } \right)} \right]\]
Now we will simplify the expression we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \left[ { - \cos 2\pi + \cos 0} \right] + \left[ { - \cos \pi + \cos 0} \right] - \left[ { - \cos 2\pi + \cos \pi } \right]\]
Now we will use the trigonometric table values we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \left[ { - 1 + 1} \right] + \left[ { - \left( { - 1} \right) + 1} \right] - \left[ { - 1 + \left( { - 1} \right)} \right]\]
Now we will further simplify we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \left[ 0 \right] + \left[ {1 + 1} \right] - \left[ { - 1 - 1} \right]\]
Now we will further simplify we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = 2 - \left( { - 2} \right)\]
Now we will again simplify we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = 2 + 2\]
Now finally simplifying we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = 4\]
The correct option is B.
Note: Students make mistakes while separating modulus of sine function. We have four quadrants, named the first quadrant, second quadrant, third quadrant and fourth quadrant. For sine function the first and second quadrants are positive quadrants and the third and fourth quadrants are negative quadrants. So, in first and second quadrant, i.e., Between 0 to \[\pi \] sine function gives us positive value and in third and fourth quadrant, i.e., \[\pi \] to \[2\pi \] sine function gives negative values.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

