
What is the value of \[\int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx\]?
A.0
B.4
C.8
D.1
Answer
217.2k+ views
Hint: In solving the above question, we will use the definition of \[\left| {\sin x} \right| \], and according to that we will apply the upper limit and lower limit for the given function, and then by using the integration formula, we will get the desired result.
Formula used :
We will use definition of\[\left| {\sin x} \right| \], i.e.,\[\left| {\sin x} \right| \] is defined as,
\[\left| {\sin x} \right| = \sin x\] if \[\sin x \ge 0\], and \[\left| {\sin x} \right| = - \sin x\] if \[\sin x < 0\],
So, if we apply the integration it is defined as,
\[\int {\left| {\sin x} \right|} dx = \int {\sin x} dx\] if \[\sin x \ge 0\],i.e., in the limits of \[0\] to \[\pi \] and
\[\int {\left| {\sin x} \right|} dx = \int { - \sin x} dx\] if \[\sin x < 0\], i.e., in the limits \[\pi \] to \[2\pi \] and also, we will use integration formula,
\[\int {\sin xdx = - \cos x + c} \].
Complete Step-by- Step Solution:
Given \[\int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx\]
Now we will distribute the integration, then we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \int_0^{2\pi } {\sin x} dx + \int_0^{2\pi } {\left| {\sin x} \right|} dx\]
Now we will use the definition of\[\left| {\sin x} \right| \], i.e.,\[\left| {\sin x} \right| \] is defined as, then we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \int_0^{2\pi } {\sin x} dx + \int_0^\pi {\sin x} dx + \int_\pi ^{2\pi } { - \sin x} dx\]
Now we will simplify the expression we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \int_0^{2\pi } {\sin x} dx + \int_0^\pi {\sin x} dx - \int_\pi ^{2\pi } {\sin x} dx\]
Now we will apply integration formula, i.e, \[\int {\sin xdx = - \cos x + c} \], we will get
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \left[ { - \cos x} \right]_0^{2\pi } + \left[ { - \cos x} \right]_0^\pi - \left[ { - \cos x} \right]_\pi ^{2\pi }\]
Now we simplify the expression by applying the limits, we get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \left[ { - \cos 2\pi - \left( { - \cos 0} \right)} \right] + \left[ { - \cos \pi - \left( { - \cos 0} \right)} \right] - \left[ { - \cos 2\pi - \left( { - \cos \pi } \right)} \right]\]
Now we will simplify the expression we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \left[ { - \cos 2\pi + \cos 0} \right] + \left[ { - \cos \pi + \cos 0} \right] - \left[ { - \cos 2\pi + \cos \pi } \right]\]
Now we will use the trigonometric table values we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \left[ { - 1 + 1} \right] + \left[ { - \left( { - 1} \right) + 1} \right] - \left[ { - 1 + \left( { - 1} \right)} \right]\]
Now we will further simplify we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \left[ 0 \right] + \left[ {1 + 1} \right] - \left[ { - 1 - 1} \right]\]
Now we will further simplify we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = 2 - \left( { - 2} \right)\]
Now we will again simplify we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = 2 + 2\]
Now finally simplifying we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = 4\]
The correct option is B.
Note: Students make mistakes while separating modulus of sine function. We have four quadrants, named the first quadrant, second quadrant, third quadrant and fourth quadrant. For sine function the first and second quadrants are positive quadrants and the third and fourth quadrants are negative quadrants. So, in first and second quadrant, i.e., Between 0 to \[\pi \] sine function gives us positive value and in third and fourth quadrant, i.e., \[\pi \] to \[2\pi \] sine function gives negative values.
Formula used :
We will use definition of\[\left| {\sin x} \right| \], i.e.,\[\left| {\sin x} \right| \] is defined as,
\[\left| {\sin x} \right| = \sin x\] if \[\sin x \ge 0\], and \[\left| {\sin x} \right| = - \sin x\] if \[\sin x < 0\],
So, if we apply the integration it is defined as,
\[\int {\left| {\sin x} \right|} dx = \int {\sin x} dx\] if \[\sin x \ge 0\],i.e., in the limits of \[0\] to \[\pi \] and
\[\int {\left| {\sin x} \right|} dx = \int { - \sin x} dx\] if \[\sin x < 0\], i.e., in the limits \[\pi \] to \[2\pi \] and also, we will use integration formula,
\[\int {\sin xdx = - \cos x + c} \].
Complete Step-by- Step Solution:
Given \[\int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx\]
Now we will distribute the integration, then we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \int_0^{2\pi } {\sin x} dx + \int_0^{2\pi } {\left| {\sin x} \right|} dx\]
Now we will use the definition of\[\left| {\sin x} \right| \], i.e.,\[\left| {\sin x} \right| \] is defined as, then we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \int_0^{2\pi } {\sin x} dx + \int_0^\pi {\sin x} dx + \int_\pi ^{2\pi } { - \sin x} dx\]
Now we will simplify the expression we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \int_0^{2\pi } {\sin x} dx + \int_0^\pi {\sin x} dx - \int_\pi ^{2\pi } {\sin x} dx\]
Now we will apply integration formula, i.e, \[\int {\sin xdx = - \cos x + c} \], we will get
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \left[ { - \cos x} \right]_0^{2\pi } + \left[ { - \cos x} \right]_0^\pi - \left[ { - \cos x} \right]_\pi ^{2\pi }\]
Now we simplify the expression by applying the limits, we get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \left[ { - \cos 2\pi - \left( { - \cos 0} \right)} \right] + \left[ { - \cos \pi - \left( { - \cos 0} \right)} \right] - \left[ { - \cos 2\pi - \left( { - \cos \pi } \right)} \right]\]
Now we will simplify the expression we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \left[ { - \cos 2\pi + \cos 0} \right] + \left[ { - \cos \pi + \cos 0} \right] - \left[ { - \cos 2\pi + \cos \pi } \right]\]
Now we will use the trigonometric table values we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \left[ { - 1 + 1} \right] + \left[ { - \left( { - 1} \right) + 1} \right] - \left[ { - 1 + \left( { - 1} \right)} \right]\]
Now we will further simplify we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = \left[ 0 \right] + \left[ {1 + 1} \right] - \left[ { - 1 - 1} \right]\]
Now we will further simplify we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = 2 - \left( { - 2} \right)\]
Now we will again simplify we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = 2 + 2\]
Now finally simplifying we will get,
\[ \Rightarrow \int_0^{2\pi } {\left( {\sin x + \left| {\sin x} \right|} \right)} dx = 4\]
The correct option is B.
Note: Students make mistakes while separating modulus of sine function. We have four quadrants, named the first quadrant, second quadrant, third quadrant and fourth quadrant. For sine function the first and second quadrants are positive quadrants and the third and fourth quadrants are negative quadrants. So, in first and second quadrant, i.e., Between 0 to \[\pi \] sine function gives us positive value and in third and fourth quadrant, i.e., \[\pi \] to \[2\pi \] sine function gives negative values.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

