
What is the value of ${\cos ^2}A{\left( {3 - 4{{\cos }^2}A} \right)^2} + {\sin ^2}A{\left( {3 - 4{{\sin }^2}A} \right)^2}$?
A. $\cos 4A$
B. $\sin 4A$
C. $1$
D. None of these
Answer
164.1k+ views
Hint: Use the formula ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$ for the terms which are in brackets. Then multiply and simplify using the identity ${\cos ^2}A + {\sin ^2}A = 1$.
Formula Used:
${\cos ^2}A + {\sin ^2}A = 1$
${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$
${a^2} + {b^2} = {\left( {a + b} \right)^2} - 2ab$
${a^3} + {b^3} = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right)$
Complete step by step solution:
The given expression is ${\cos ^2}A{\left( {3 - 4{{\cos }^2}A} \right)^2} + {\sin ^2}A{\left( {3 - 4{{\sin }^2}A} \right)^2}$
Use the formula ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$
Substituting $a = 3$ and $b = 4{\cos ^2}A$, we get
${\left( {3 - 4{{\cos }^2}A} \right)^2} = {\left( 3 \right)^2} - 2 \times 3 \times 4{\cos ^2}A + {\left( {4{{\cos }^2}A} \right)^2}$
$ = 9 - 24{\cos ^2}A + 16{\cos ^4}A$
Substituting $a = 3$ and $b = 4{\sin ^2}A$, we get
${\left( {3 - 4{{\sin }^2}A} \right)^2} = {\left( 3 \right)^2} - 2 \times 3 \times 4{\sin ^2}A + {\left( {4{{\sin }^2}A} \right)^2}$
$ = 9 - 24{\sin ^2}A + 16{\sin ^4}A$
Substituting these in the given expression, we get
${\cos ^2}A\left( {9 - 24{{\cos }^2}A + 16{{\cos }^4}A} \right) + {\sin ^2}A{\left( {9 - 24{{\sin }^2}A + 16{{\sin }^4}A} \right)^2}$
Use the formula ${a^m} \cdot {a^n} = {a^{m + n}}$
$ = 9{\cos ^2}A - 24{\cos ^4}A + 16{\cos ^6}A + 9{\sin ^2}A - 24{\sin ^4}A + 16{\sin ^6}A$
Arrange the terms.
$ = 9{\cos ^2}A + 9{\sin ^2}A - 24{\cos ^4}A - 24{\sin ^4}A + 16{\cos ^6}A + 16{\sin ^6}A$
Take common.
$ = 9\left( {{{\cos }^2}A + {{\sin }^2}A} \right) - 24\left( {{{\cos }^4}A + {{\sin }^4}A} \right) + 16\left( {{{\cos }^6}A + {{\sin }^6}A} \right)$
Simplify the terms inside the brackets.
For the terms inside the first bracket, use the identity ${\cos ^2}A + {\sin ^2}A = 1$
For the terms inside the second bracket, ${\cos ^4}A + {\sin ^4}A = {\left( {{{\cos }^2}A} \right)^2} + {\left( {{{\sin }^2}A} \right)^2}$
Use the identity ${a^2} + {b^2} = {\left( {a + b} \right)^2} - 2ab$
Substituting $a = {\cos ^2}A$ and $b = {\sin ^2}A$, we get
${\cos ^4}A + {\sin ^4}A = {\left( {{{\cos }^2}A + {{\sin }^2}A} \right)^2} - 2{\cos ^2}A{\sin ^2}A$
Use the identity ${\cos ^2}A + {\sin ^2}A = 1$
$ \Rightarrow {\cos ^4}A + {\sin ^4}A = 1 - 2{\cos ^2}A{\sin ^2}A$
For the terms inside the third bracket, ${\cos ^6}A + {\sin ^6}A = {\left( {{{\cos }^2}A} \right)^3} + {\left( {{{\sin }^2}A} \right)^3}$
Use the identity ${a^3} + {b^3} = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right)$
Substituting $a = {\cos ^2}A$ and $b = {\sin ^2}A$, we get
${\cos ^6}A + {\sin ^6}A = {\left( {{{\cos }^2}A + {{\sin }^2}A} \right)^3} - 3{\cos ^2}A{\sin ^2}A\left( {{{\cos }^2}A + {{\sin }^2}A} \right)$
Use the identity ${\cos ^2}A + {\sin ^2}A = 1$
$ \Rightarrow {\cos ^6}A + {\sin ^6}A = 1 - 3{\cos ^2}A{\sin ^2}A$
Substituting these expressions, we get
The given expression $ = 9\left( 1 \right) - 24\left( {1 - 2{{\cos }^2}A{{\sin }^2}A} \right) + 16\left( {1 - 3{{\cos }^2}A{{\sin }^2}A} \right)$
$ = 9 - 24 + 48{\cos ^2}A{\sin ^2}A + 16 - 48{\cos ^2}A{\sin ^2}A$
Cancel the term $48{\cos ^2}A{\sin ^2}A$
$ = 9 - 24 + 16 = 1$
Option ‘C’ is correct
Note: Alternate method for finding the value of the given expression. Make both the terms as a perfect square expression. Then use trigonometric identities.
${\cos ^2}A{\left( {3 - 4{{\cos }^2}A} \right)^2} + {\sin ^2}A{\left( {3 - 4{{\sin }^2}A} \right)^2}$
$ = {\left\{ {\cos A\left( {3 - 4{{\cos }^2}A} \right)} \right\}^2} + {\left\{ {\sin A\left( {3 - 4{{\sin }^2}A} \right)} \right\}^2}$
$ = {\left( {3\cos A - 4{{\cos }^3}A} \right)^2} + {\left( {3\sin A - 4{{\sin }^3}A} \right)^2}$
Use the identities $4{\cos ^3}A - 3\cos A = \cos 3A$ and $3\sin A - 4{\sin ^3}A = \sin 3A$
$ = {\left( {\cos 3A} \right)^2} + {\left( {\sin 3A} \right)^2}$
$ = {\cos ^2}3A + {\sin ^2}3A$
Use the identity ${\cos ^2}A + {\sin ^2}A = 1$
Formula Used:
${\cos ^2}A + {\sin ^2}A = 1$
${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$
${a^2} + {b^2} = {\left( {a + b} \right)^2} - 2ab$
${a^3} + {b^3} = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right)$
Complete step by step solution:
The given expression is ${\cos ^2}A{\left( {3 - 4{{\cos }^2}A} \right)^2} + {\sin ^2}A{\left( {3 - 4{{\sin }^2}A} \right)^2}$
Use the formula ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$
Substituting $a = 3$ and $b = 4{\cos ^2}A$, we get
${\left( {3 - 4{{\cos }^2}A} \right)^2} = {\left( 3 \right)^2} - 2 \times 3 \times 4{\cos ^2}A + {\left( {4{{\cos }^2}A} \right)^2}$
$ = 9 - 24{\cos ^2}A + 16{\cos ^4}A$
Substituting $a = 3$ and $b = 4{\sin ^2}A$, we get
${\left( {3 - 4{{\sin }^2}A} \right)^2} = {\left( 3 \right)^2} - 2 \times 3 \times 4{\sin ^2}A + {\left( {4{{\sin }^2}A} \right)^2}$
$ = 9 - 24{\sin ^2}A + 16{\sin ^4}A$
Substituting these in the given expression, we get
${\cos ^2}A\left( {9 - 24{{\cos }^2}A + 16{{\cos }^4}A} \right) + {\sin ^2}A{\left( {9 - 24{{\sin }^2}A + 16{{\sin }^4}A} \right)^2}$
Use the formula ${a^m} \cdot {a^n} = {a^{m + n}}$
$ = 9{\cos ^2}A - 24{\cos ^4}A + 16{\cos ^6}A + 9{\sin ^2}A - 24{\sin ^4}A + 16{\sin ^6}A$
Arrange the terms.
$ = 9{\cos ^2}A + 9{\sin ^2}A - 24{\cos ^4}A - 24{\sin ^4}A + 16{\cos ^6}A + 16{\sin ^6}A$
Take common.
$ = 9\left( {{{\cos }^2}A + {{\sin }^2}A} \right) - 24\left( {{{\cos }^4}A + {{\sin }^4}A} \right) + 16\left( {{{\cos }^6}A + {{\sin }^6}A} \right)$
Simplify the terms inside the brackets.
For the terms inside the first bracket, use the identity ${\cos ^2}A + {\sin ^2}A = 1$
For the terms inside the second bracket, ${\cos ^4}A + {\sin ^4}A = {\left( {{{\cos }^2}A} \right)^2} + {\left( {{{\sin }^2}A} \right)^2}$
Use the identity ${a^2} + {b^2} = {\left( {a + b} \right)^2} - 2ab$
Substituting $a = {\cos ^2}A$ and $b = {\sin ^2}A$, we get
${\cos ^4}A + {\sin ^4}A = {\left( {{{\cos }^2}A + {{\sin }^2}A} \right)^2} - 2{\cos ^2}A{\sin ^2}A$
Use the identity ${\cos ^2}A + {\sin ^2}A = 1$
$ \Rightarrow {\cos ^4}A + {\sin ^4}A = 1 - 2{\cos ^2}A{\sin ^2}A$
For the terms inside the third bracket, ${\cos ^6}A + {\sin ^6}A = {\left( {{{\cos }^2}A} \right)^3} + {\left( {{{\sin }^2}A} \right)^3}$
Use the identity ${a^3} + {b^3} = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right)$
Substituting $a = {\cos ^2}A$ and $b = {\sin ^2}A$, we get
${\cos ^6}A + {\sin ^6}A = {\left( {{{\cos }^2}A + {{\sin }^2}A} \right)^3} - 3{\cos ^2}A{\sin ^2}A\left( {{{\cos }^2}A + {{\sin }^2}A} \right)$
Use the identity ${\cos ^2}A + {\sin ^2}A = 1$
$ \Rightarrow {\cos ^6}A + {\sin ^6}A = 1 - 3{\cos ^2}A{\sin ^2}A$
Substituting these expressions, we get
The given expression $ = 9\left( 1 \right) - 24\left( {1 - 2{{\cos }^2}A{{\sin }^2}A} \right) + 16\left( {1 - 3{{\cos }^2}A{{\sin }^2}A} \right)$
$ = 9 - 24 + 48{\cos ^2}A{\sin ^2}A + 16 - 48{\cos ^2}A{\sin ^2}A$
Cancel the term $48{\cos ^2}A{\sin ^2}A$
$ = 9 - 24 + 16 = 1$
Option ‘C’ is correct
Note: Alternate method for finding the value of the given expression. Make both the terms as a perfect square expression. Then use trigonometric identities.
${\cos ^2}A{\left( {3 - 4{{\cos }^2}A} \right)^2} + {\sin ^2}A{\left( {3 - 4{{\sin }^2}A} \right)^2}$
$ = {\left\{ {\cos A\left( {3 - 4{{\cos }^2}A} \right)} \right\}^2} + {\left\{ {\sin A\left( {3 - 4{{\sin }^2}A} \right)} \right\}^2}$
$ = {\left( {3\cos A - 4{{\cos }^3}A} \right)^2} + {\left( {3\sin A - 4{{\sin }^3}A} \right)^2}$
Use the identities $4{\cos ^3}A - 3\cos A = \cos 3A$ and $3\sin A - 4{\sin ^3}A = \sin 3A$
$ = {\left( {\cos 3A} \right)^2} + {\left( {\sin 3A} \right)^2}$
$ = {\cos ^2}3A + {\sin ^2}3A$
Use the identity ${\cos ^2}A + {\sin ^2}A = 1$
Recently Updated Pages
Chemistry in Everyday Life Chapter for JEE Main Chemistry

Chemical Thermodynamics Chapter for JEE Main Chemistry

Difference Between Erosion and Corrosion: JEE Main 2024

Solutions Chapter for JEE Main Chemistry

Redox Reactions and Electrochemistry Chapter for JEE Main Chemistry

Difference Between Electrolytes and Non-Electrolytes: JEE Main 2024

Trending doubts
JEE Main Marks Vs Percentile Vs Rank 2025: Calculate Percentile Using Marks

JEE Mains 2025 Cutoff: Expected and Category-Wise Qualifying Marks for NITs, IIITs, and GFTIs

NIT Cutoff Percentile for 2025

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025 CutOff for NIT - Predicted Ranks and Scores

Other Pages
NCERT Solutions for Class 10 Maths Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related To Circles

NCERT Solutions for Class 10 Maths Chapter 12 Surface Area and Volume

NCERT Solutions for Class 10 Maths Chapter 14 Probability

NCERT Solutions for Class 10 Maths In Hindi Chapter 15 Probability

Total MBBS Seats in India 2025: Government and Private Medical Colleges
