
What is the value of a trigonometric expression \[\dfrac{{\left( {\tan70^{\circ } - \tan20^{\circ }} \right)}}{{\tan50^{\circ }}}\]?
A. 2
B. 1
C. 0
D. 3
Answer
162.9k+ views
Hint: First we consider, \[\left( {70^{\circ } - 20^{\circ }} \right) = 50^{\circ }\]. Then take tan on both sides. On left-hand side apply the identity of \[\tan\left( {A - B} \right)\]. Further simplify the equation to reach the required answer.
Formula Used:
\[\tan\left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A \tan B}}\]
\[\tan A = \dfrac{1}{{\cot A }}\]
\[\tan\left( {90^{\circ } - A} \right) = \cot A\]
Complete step by step solution:
The given trigonometric expression is \[\dfrac{{\left( {\tan70^{\circ } - \tan20^{\circ }} \right)}}{{\tan50^{\circ }}}\].
Let’s find out the value of the above expression.
Let consider,
\[\left( {70^{\circ } - 20^{\circ }} \right) = 50^{\circ }\]
Take \[\tan\] on both sides.
\[\tan\left( {70^{\circ } - 20^{\circ }} \right) = \tan50^{\circ }\]
Now apply the identity \[\tan\left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A \tan B}}\] on the left-hand side of the equation.
\[\dfrac{{\tan70^{\circ } - \tan20^{\circ }}}{{1 + \tan70^{\circ }\tan20^{\circ }}} = \tan50^{\circ }\]
Simplify the above equation.
\[\dfrac{{\tan70^{\circ } - \tan20^{\circ }}}{{\tan50^{\circ }}} = 1 + \tan70^{\circ }\tan20^{\circ }\]
\[ \Rightarrow \]\[\dfrac{{\tan70^{\circ } - \tan20^{\circ }}}{{\tan50^{\circ }}} = 1 + \tan70^{\circ }\tan\left( {90^{\circ } - 70^{\circ }} \right)\]
Apply the identity \[\tan\left( {90^{\circ } - A} \right) = \cot A\] on the right-hand side of the equation.
\[\dfrac{{\tan70^{\circ } - \tan20^{\circ }}}{{\tan50^{\circ }}} = 1 + \tan70^{\circ }\cot70^{\circ }\]
\[ \Rightarrow \]\[\dfrac{{\tan70^{\circ } - \tan20^{\circ }}}{{\tan50^{\circ }}} = 1 + \tan70^{\circ }\left( {\dfrac{1}{{\tan70^{\circ }}}} \right)\] [ Since \[\tan A = \dfrac{1}{{\cot A }}\]]
\[ \Rightarrow \]\[\dfrac{{\tan70^{\circ} - \tan20^{\circ }}}{{\tan50^{\circ }}} = 1 + 1\]
\[ \Rightarrow \]\[\dfrac{{\tan70^{\circ } - \tan20^{\circ }}}{{\tan50^{\circ }}} = 2\]
Hence the correct option is A.
Note: Trigonometric expressions can be solved by converting the sum or differences of sine, cosine, or tangent functions to the product of trigonometric ratios.
Students often get confused with the formulas \[tan\left( {A - B} \right)\] and \[tan\left( {A + B} \right)\].
The correct formulas are:
\[tan\left( {A - B} \right) = \dfrac{{tanA - tanB}}{{1 + tanA tanB}}\]
\[tan\left( {A + B} \right) = \dfrac{{tanA + tanB}}{{1 - tanA tanB}}\]
Formula Used:
\[\tan\left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A \tan B}}\]
\[\tan A = \dfrac{1}{{\cot A }}\]
\[\tan\left( {90^{\circ } - A} \right) = \cot A\]
Complete step by step solution:
The given trigonometric expression is \[\dfrac{{\left( {\tan70^{\circ } - \tan20^{\circ }} \right)}}{{\tan50^{\circ }}}\].
Let’s find out the value of the above expression.
Let consider,
\[\left( {70^{\circ } - 20^{\circ }} \right) = 50^{\circ }\]
Take \[\tan\] on both sides.
\[\tan\left( {70^{\circ } - 20^{\circ }} \right) = \tan50^{\circ }\]
Now apply the identity \[\tan\left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A \tan B}}\] on the left-hand side of the equation.
\[\dfrac{{\tan70^{\circ } - \tan20^{\circ }}}{{1 + \tan70^{\circ }\tan20^{\circ }}} = \tan50^{\circ }\]
Simplify the above equation.
\[\dfrac{{\tan70^{\circ } - \tan20^{\circ }}}{{\tan50^{\circ }}} = 1 + \tan70^{\circ }\tan20^{\circ }\]
\[ \Rightarrow \]\[\dfrac{{\tan70^{\circ } - \tan20^{\circ }}}{{\tan50^{\circ }}} = 1 + \tan70^{\circ }\tan\left( {90^{\circ } - 70^{\circ }} \right)\]
Apply the identity \[\tan\left( {90^{\circ } - A} \right) = \cot A\] on the right-hand side of the equation.
\[\dfrac{{\tan70^{\circ } - \tan20^{\circ }}}{{\tan50^{\circ }}} = 1 + \tan70^{\circ }\cot70^{\circ }\]
\[ \Rightarrow \]\[\dfrac{{\tan70^{\circ } - \tan20^{\circ }}}{{\tan50^{\circ }}} = 1 + \tan70^{\circ }\left( {\dfrac{1}{{\tan70^{\circ }}}} \right)\] [ Since \[\tan A = \dfrac{1}{{\cot A }}\]]
\[ \Rightarrow \]\[\dfrac{{\tan70^{\circ} - \tan20^{\circ }}}{{\tan50^{\circ }}} = 1 + 1\]
\[ \Rightarrow \]\[\dfrac{{\tan70^{\circ } - \tan20^{\circ }}}{{\tan50^{\circ }}} = 2\]
Hence the correct option is A.
Note: Trigonometric expressions can be solved by converting the sum or differences of sine, cosine, or tangent functions to the product of trigonometric ratios.
Students often get confused with the formulas \[tan\left( {A - B} \right)\] and \[tan\left( {A + B} \right)\].
The correct formulas are:
\[tan\left( {A - B} \right) = \dfrac{{tanA - tanB}}{{1 + tanA tanB}}\]
\[tan\left( {A + B} \right) = \dfrac{{tanA + tanB}}{{1 - tanA tanB}}\]
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
